Cílem diplomové práce byla aplikace fuzzy aritmetiky na problematiku multikriteriálního hodnocení krajinného potenciálu, kdy Saatyho metoda byla implementována na fuzzy analyticko-hierarchický proces. Dále byla navrhnuta reprezentace
fuzzy variant řešení a navrhnut postup výpočtu fuzzy multikriteriální metody hodnocení. Na závěr byly všechny výsledky okomentovány a zvizualizovány pomocí kartografických metod.
Po zpracování této diplomové práce je možné říci, že použití metody fuzzy AHP je nepatrně zdlouhavější než jednotlivé výpočty v prostředí Urban Planner. Aby bylo možné fuzzifikovat vstupní data, bylo nutné vytvořit nový balík v R programu
a následně v něm napsat zdrojové kódy. Poté následovalo postupné načítání všech vstupních dat a jednotlivé výpočty. Některé výpočty trvaly poměrně dlouho, což bylo ovlivněno i výkonností výpočetní techniky. Na druhou stranu při použití fuzzy
aritmetiky je uživatel schopen ověřit konzistenci matice, která v extenzi Urban Planner ověřit nelze, pokud uživatel mění váhy u jednotlivých parametrů a faktorů.
Další nespornou výhodou použití metody fuzzy AHP je možnost naprogramování dalších srovnávacích metod, jako např. teorie možnosti. Na základě popsaných výstupů je vhodné říci, že teorie možnosti není vždy chybnou variantou pro zjištění výsledků.
Ve většině případů dává rozdílné výsledky než ostatní metody, ale například na výřezu ekonomického pilíře vyšel raster míry nezbytnosti s rastrem z Urban Planner skoro identicky. Z hlediska teorie by výsledky měly být vždy o něco světlejší než při
použití jiných metod, protože teorie možnosti vždy v území vyhledává maximální hodnoty a porovnává je s ostatními.
V prostředí R je také zároveň možnost tvorby grafů, kde si uživatel může ověřit své výsledky, popřípadě vyplotovat statistické údaje, jako četnost, normální rozdělení dat a další.
Závěrem nelze jednoduše říci, jestli je použití fuzzy AHP správnější než klasický přístup. Klasický výpočet AHP přináší řadu nevýhod. Zaprvé, se převážně používá mezi alternativami, které jsou ostře vymezeny, dále používá nevyvážené rozhodovací škály a také neumí pracovat s neurčitostí, která je součástí každého rozhodování. Na základě závěrečných obrázků je více než patrné, že obě metody dávají rozdílné výsledky, avšak podobné. Metoda fuzzy AHP poskytuje zcela objektivní výsledky, které jsou vypočítány citlivěji a přesněji než při použití klasické varianty AHP. Navíc dokáže více postihnout uživatelovu nejistotu při rozhodování a neurčitost při neschopnosti popsání přesné reality. Uživatelova nejistota je chápána v tom smyslu, jestli je hodnotitel schopen popsat matici párových porovnání a jak ji popíše. Tedy zda umí vyjádřit rozdíly mezi variantami, jakou bude schopen použít fuzzy stupnici apod. Výběr fuzzy stupnice je zásadním v tom smyslu, že pokud uživatel zvolí rozšířenou fuzzy stupnici, tak velikost fuzzy čísla je dva, kdežto u základní stupnice je velikost fuzzy čísla na hodnotě čtyři. V případě použití základní stupnice se při přenásobení rastery projeví více nejistota uživatele. V klasickém AHP je potřeba více uživatelů pro ohodnocení variant, aby byly výsledky objektivní. Každý hodnotitel tvrdí, že si je zcela jistý při ohodnocení vztahů mezi prvky, ovšem každý z nich to hodnotí jinak.
Diplomová práce
Autor:
Bc. Aneta DRÁŽNÁ
Vedoucí práce:
Doc. Mgr. Jiří DVORSKÝ, Ph.D.