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a b s t r a c t 

Frequent itemset mining is a basic data mining task and has numerous applications in other data mining 

tasks. In recent years, some data structures based on sets of nodes in a prefix tree have been presented. 

These data structures store essential information about frequent itemsets. In this paper, we propose an- 

other efficient data structure, NegNodeset . Similar to other such data structures, the basis of NegNodeset 

is sets of nodes in a prefix tree. NegNodeset employs a novel encoding model for nodes in a prefix tree 

based on the bitmap representation of sets. Based on the NegNodeset data structure, we propose negFIN, 

which is an efficient algorithm for frequent itemset mining. The efficiency of the negFIN algorithm is 

confirmed by the following three reasons: (1) the NegNodeset s of itemsets are extracted using bitwise 

operators, (2) the complexity of calculating NegNodeset s and counting supports is reduced to O ( n ), where 

n is the cardinality of NegNodeset , and (3) it employs a set-enumeration tree to generate frequent item- 

sets and uses a promotion method to prune the search space in this tree. Our extensive performance 

study on a variety of benchmark datasets indicates that negFIN is the fastest algorithm, compared with 

previous state-of-the-art algorithms. However, our algorithm runs with the same speed as dFIN on some 

datasets. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

“Frequent itemset mining” is one of the important data min-

ng tasks and has numerous applications in other data mining

asks, such as the discovery of association rules ( Ceglar & Rod-

ick, 2006 ), clustering ( Wang, Wang, Yang, & Yu, 2002 ), and clas-

ification ( Cheng, Yan, Han, & Yu, 2008 ). The original use of this

ask was for market basket analysis and was first proposed in

 Agrawal, Imieli ́nski, & Swami, 1993 ). It aims to find items in

he customer transactions database that are frequently bought to-

ether. 

.1. Problem definition 

Let I = { i 1 , i 2 ,…, i nit } be the set of all items in the transactional

atabase; a transaction T be a set of some items ( T ⊆I ), with a

nique identifier TID ; and a database DB = { T 1 , T 2 ,…, T nt } be the set

f transactions. Each P where P ⊆I is called an "itemset." P is also

alled a k-itemset, where | P | = k . A transaction T contains an item-

et P if and only if P ⊆T ; the support of P , which is denoted as
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upport ( P ), is defined as the percentage of transactions in DB con-

aining P . Let min − support be the user-defined minimum support

hreshold. P is called a frequent itemset if and only if min − support

support ( P ). Given the database DB and the min − support thresh-

ld, the frequent itemset mining task is defined as "discovering

ll frequent itemsets with their supports." The number of itemsets

hat have to be checked to discover frequent itemsets is 2 nit , where

it = | I |. Therefore, the problem of discovering frequent itemsets is

P. 

.2. Motivation and contribution 

Frequent itemset mining has been a hot research topic in the

ata mining field for the last two decades ( Aliberti, Colantonio,

i Pietro, & Mariani, 2015; Calders, Dexters, Gillis, & Goethals,

014; Deng, 2014; Deng, Gao, & Xu, 2011; Lan, Hong, Lin, & Wang,

015; Lin, Hong, & Lin, 2015; Troiano & Scibelli, 2014; Vo, Le,

ong, & Le, 2015 ). In recent years, four types of data structures

ased on the sets of nodes in a "prefix tree" have been presented

o enhance the efficiency of mining frequent itemsets. They are:

1) Node − list ( Deng & Wang, 2010 ), (2) N − list ( Deng, Wang, &

iang, 2012 ), (3) Nodeset ( Deng & Lv, 2014 ), and (4) DiffNodeset

 Deng, 2016 ). All of these data structures employ a prefix tree with

ncoded nodes and associate a set of nodes with each itemset. The

https://doi.org/10.1016/j.eswa.2018.03.041
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nodes in Node − list and N − list are encoded by the pre-order rank

and post-order rank of the node. Two algorithms, PPV ( Deng &

Wang, 2010 ) and PrePost ( Deng et al., 2012 ), have been proposed

for mining frequent itemsets based on these two data structures,

respectively. These two algorithms outperform their predecessors.

However, they have a drawback: they consume a lot of memory

( Deng & Lv, 2014 ). To overcome this problem, another data struc-

ture, called Nodeset ( Deng & Lv, 2014 ), has been proposed. Unlike

N − list and Node − list , the nodes in a Nodeset are encoded only by

the pre-order (or post-order) rank of the nodes ( Deng & Lv, 2014 ).

The Nodeset of each k-itemset (3 ≤ k ) is extracted by the inter-

section of the Nodeset s of two (k-1)-itemsets ( Deng & Lv, 2014 ).

The FIN algorithm ( Deng & Lv, 2014 ) has been proposed for fre-

quent itemset mining based on this structure. The disadvantage

of Nodeset is that the Nodeset cardinality becomes very large for

some datasets ( Deng, 2016 ). To overcome this problem, another

data structure, DiffNodeset ( Deng, 2016 ), has been proposed. In

contrast to Nodeset , the DiffNodeset of each k-itemset (3 ≤ k ) is

extracted by the difference between the DiffNodeset s of two (k-1)-

itemsets ( Deng, 2016 ). Extensive experiments show that the cardi-

nality of DiffNodeset is smaller than that of Nodeset ( Deng, 2016 ).

The dFIN algorithm ( Deng, 2016 ) has been proposed for mining

frequent itemsets based on the DiffNodeset data structure. Exper-

imental results show that the dFIN algorithm is faster than its pre-

decessors ( Deng, 2016 ). 

Despite the advantages of DiffNodeset , we find that calculat-

ing the difference between two DiffNodeset s takes a long time on

some databases. To overcome this problem, we propose a new

data structure, NegNodeset , which employs a prefix tree as well

as the previous four data structures. Unlike these data structures,

NegNodeset employs a new encoding model for nodes. The node-

encoding model of NegNodeset is based on the bitmap represen-

tation of sets. Consider a universal set U with cardinality n . We

can represent each subset of U by a bitmap of size n . Each ele-

ment of U is assigned to one of the bits in the bitmap. If an ele-

ment is a member of a subset S ( S ⊆U ), then its corresponding bit

is 1; otherwise it is 0. Take the following example into account:

let there be a universal set U = { a 3 , a 2 , a 1 , a 0 } and subsets A = { a 3 , a 2 }

and B = { a 3 , a 0 }. With two bitmaps of size four, in which each a i (0

≤ i ≤ 3) is assigned to their ith bit, these subsets are represented

as A = 1100 and B = 1001. With this representation of sets, some

common set operators can be implemented faster using bitwise

operators. For example, to calculate the intersection (union) of two

given sets, we can use the bitwise operator AND (OR) on their cor-

responding bitmaps. Bitwise operators are implemented efficiently

in CPUs and done in one CPU cycle. 

Based on the NegNodeset data structure, we propose negFIN, a

fast algorithm for mining frequent itemsets. The efficiency of the

negFIN algorithm is confirmed by the following three reasons: (1)

new NegNodesets are extracted using bitwise operators, which are

fast; (2) the complexity of extracting new NegNodesets and count-

ing their supports is reduced to O ( n ), instead of O ( m + n ) in pre-

vious algorithms, where m and n are the cardinality of two sets

of nodes, and n ≤ m ; and (3) it employs a "set-enumeration tree"

( Rymon, 1992 ) to generate frequent itemsets and uses a promotion

method to prune search space in this tree. This pruning strategy

generates the frequent itemsets, sometimes directly without can-

didate generation. 

1.3. Performance of negFIN 

We conducted several experimental studies to evaluate the per-

formance of the negFIN algorithm. We compared the performance

of negFIN against dFIN ( Deng, 2016 ), Goethals’s Eclat ( Goethals &

Zaki, 2004 ), and FP-growth 

∗ ( Grahne & Zhu, 2005 ), which have

been the leading algorithms in the field of frequent itemset mining
o far. The experimental results show that negFIN has good per-

ormance and, compared to the above mentioned algorithms, runs

aster or equally fast. It runs faster than Goethals’s Eclat ( Goethals

 Zaki, 2004 ) and FP-growth 

∗ ( Grahne & Zhu, 2005 ) on all datasets.

t still runs faster than dFIN ( Deng, 2016 ) on some datasets, but

uns as fast as dFIN ( Deng, 2016 ) on other datasets. 

.4. Structure of the paper 

The rest of this paper is organized as follows: Section 2 dis-

usses background and related work for frequent itemset mining.

ection 3 introduces basic definitions and properties relevant to

he NegNodeset structure and the negFIN algorithm. Section 4 ex-

lains the negFIN algorithm. Section 5 shows experimental results.

ection 6 concludes the paper, and section 7 provides some future

esearch directions. 

. Related work 

Many algorithms have been proposed to discover all frequent

temsets efficiently. These algorithms are divided into two main

ategories: (1) algorithms that use the "candidate generation"

ethod, and (2) algorithms that use the "pattern growth" method

 Ceglar & Roddick, 2006 ). In the candidate generation method, the

andidate itemsets are generated first, and then frequent item-

ets are identified from these candidate itemsets. This method

mploys an anti-monotone property, called Apriori ( Agrawal &

rikant, 1994 ), to prune search space. The Apriori property explains

hat if an itemset is not frequent, then none of its super-itemsets

re frequent either. Algorithms like ( Agrawal & Srikant, 1994; Deng

t al., 2011; Savasere, Omiecinski, & Navathe, 1995; Shenoy et al.,

0 0 0; Zaki, 20 0 0; Zaki & Gouda, 2003 ) employ the candidate gen-

ration method. The drawback of this method is that it is highly

xpensive, because it requires multiple database scans. 

Unlike the candidate generation method, the pattern growth

ethod does not generate the candidate itemsets and avoids mul-

iple database scans by storing essential information about fre-

uent itemsets into special data structures. The classic and basic

lgorithm in this category is the FP-growth algorithm ( Han, Pei, &

in, 20 0 0 ). It stores essential information about frequent itemsets

n a tree-based data structure, namely frequent pattern tree (FP-

ree). Similar to the FP-growth algorithm, other algorithms, like

 Grahne & Zhu, 2005; Jian et al., 2001; Liu, Lu, Lou, Xu, & Yu,

004 ), employ the pattern growth method to discover frequent

temsets. Despite the above benefits of the pattern growth method,

his method has some weaknesses, which are as follows: (1) it

s inefficient on sparse datasets ( Deng et al., 2012 ) and (2) the

ata structures employed by pattern growth algorithms are com-

lex ( Woon, Ng, & Lim, 2004 ). 

In recent years, four types of data structures based on pre-

x trees have been proposed to store essential information about

requent itemsets, which are as follows: (1) Node − list ( Deng &

ang, 2010 ), (2) N − list ( Deng et al., 2012 ), (3) Nodeset ( Deng

 Lv, 2014 ), and (4) DiffNodeset ( Deng, 2016 ). Both Node − list

nd N − list are based on a tree structure called PPC-tree ( Deng

 Wang, 2010; Deng et al., 2012 ). A PPC-tree is a prefix tree

n which each node is encoded by its pre-order rank and post-

rder rank. The Node − list or N − list of an itemset is a set of

odes in the PPC-tree. N − list has two advantages over Node − list :

1) the cardinality of the N − list of an itemset is much smaller

han the cardinality of its Node − list . (2) N − list employs a prop-

rty, called the "single path property," to directly discover fre-

uent itemsets without candidate generation in some cases. Two

lgorithms, PPV ( Deng & Wang, 2010 ) and PrePost ( Deng et al.,

012 ), have been proposed for discovering all frequent item-

ets, based on Node − list and N − list respectively. In recent years,
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Table 1 

A sample transaction database. min −support = 0 · 4 . 

TID Items Ordered frequent items 

1 e, b, g, d b, d, e 

2 c, e, b, a a, b, c, e 

3 c, b, a, i a, b, c 

4 a, d, h a, d 

5 a, d, c, b, f a, b, c, d 
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Fig. 1. The zero-based vector L 1 , and the index of each frequent item in Example 1 . 

Fig. 2. The bit assigned to each frequent item for Example 1 . 
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 Deng & Lv, 2015; Vo, Coenen, Le, & Hong, ) have employed highly

fficient pruning techniques to enhance PrePost performance. De-

pite the mentioned advantages of Node − list and N − list , these

ata structures consume a lot of memory, because they need to

tore both the pre-order and post-order ranks of nodes. To over-

ome this problem, the Nodeset ( Deng & Lv, 2014 ) data structure

as been proposed, which only holds one of either the pre-order

r the post-order rank of nodes. The Nodeset of each k-itemset (3 ≤
 ) is extracted from the intersection of the Nodeset s of two (k − 1)-

temsets ( Deng & Lv, 2014 ). The FIN ( Deng & Lv, 2014 ) algorithm

as been proposed for discovering frequent itemsets based on the

odeset data structure. Although Nodeset is an efficient structure

or discovering frequent itemsets, the Nodeset cardinality becomes

ery large on some datasets ( Deng, 2016 ). To overcome this prob-

em, the DiffNodeset ( Deng, 2016 ) data structure has been pro-

osed. In contrast to Nodeset , the DiffNodeset of each k-itemset

3 ≤ k ) is extracted from the difference between the DiffNodeset s

f two (k − 1)-itemsets ( Deng, 2016 ). The dFIN ( Deng, 2016 ) algo-

ithm has been proposed for discovering frequent itemsets based

n the DiffNodeset data structure. Extensive experiments show that

he dFIN algorithm runs faster than its state-of-the-art predeces-

ors ( Deng, 2016 ). 

. Basic terminologies 

In addition, similar data structure named PUN − list

 Deng, 2018 ) has been proposed to discover "high utility itemsets,"

 new kind of mining task that is different from frequent itemset

ining. In this task, each item has a utility value and can occur

ore than once in a transaction. A high utility itemset is an

temset that its utility is not less than a given minimum threshold.

n addition to storing an information about frequent itemsets,

UN − list data structure also stores an information about utilities.

he MIP ( Deng, 2018 ) algorithm has been proposed for efficiently

iscovering high utility itemsets based on the PUN − list data

tructure. The experimental results show that MIP algorithm is

ery efficient and runs faster than its state-of-the-art predecessors

 Deng, 2018 ). 

In this section, the basic terminologies and properties related to

he NegNodeset structure and the negFIN algorithm will be intro-

uced. Here, some notations and terminologies are similar to the

otations and terminologies that are used in ( Deng & Wang, 2010;

eng et al., 2012 ). Most notations and terminologies are illustrated

y examples. These examples are based on Example 1 . 

xample 1. Consider a sample transaction database, which is

hown in Table 1 , and min − support = 0 • 4. In this table, the first

olumn shows the transaction ID ( TID ), the second column shows

he items in each transaction, and the third column shows the fre-

uent items in each transaction, which are sorted in non-ascending

rder with respect to support ( α), where α is an item. 

efinition 1. ( �relation). ∀ i 1 , i 2 ∈ F 1 (The set of frequent items);

 2 �i 1 if and only if support ( i 2 ) ≥ support ( i 1 ). In Example 1 ,

 �b �c �d �e . 
efinition 2. ( L 1 ). Given F 1 , L 1 is the zero-based vector of ordered

requent items, where items are sorted in non-descending order

ith respect to support ( α), where α is an item. 

In this study, L 1 is denoted as L 1 = [ i 0 , i 1 ,…, i nf − 1 ], where

f = | F 1 | (the abbreviation for n umber of f requent items),

nd i nf − 1 �…�i 1 �i 0 . Furthermore, a k-itemset P is de-

oted as P k = i k …i 2 i 1 or P k = i k P k − 1 , where i k �…�i 2 �i 1 , and

 k − 1 = i k − 1 …i 2 i 1 . 

In Example 1 , F 1 = { e, b, a, c, d }, L 1 = [ e, d, c, b, a ]( Fig. 1 ), and a

ample itemset P = { e, b, d } is denoted as P 3 = bde . 

efinition 3. ( ́P k ). Let P k = i k P k − 1 (2 ≤ k ). Ṕ k is defined as Ṕ k =
 i k P k −1 , where ¬ i k means the absence of item i k . 

efinition 4. ( index ( item i )). For any item i, i ∈ L 1 , index ( i ) is

efined as the index of item i in the zero-based vector L 1 .

ig. 1 shows the index of each frequent item in Example 1 . 

efinition 5. ( BMC ( itemset P k ): the abbreviation for b it m ap c ode

f itemset). Each itemset P k can be represented by a bitmap code

MC ( P k ) = b nf − 1 …b 1 b 0 of size nf as follows: the jth item in the

ero-based vector L 1 is assigned to the bit b j in this bitmap. If an

tem i ( i ∈ L 1 ) is a member of P k , then its corresponding bit is 1;

therwise it is 0. 

The bit assigned to each frequent item for Example 1 is shown

n Fig. 2 . In Example 1 , BMC ( ade ) = 10011. 

NegNodeset s are based on the BMC-tree. Here, BMC-tree is the

bbreviation for B it M ap C oding tree and is defined as follows: 

efinition 6. (BMC-tree). A BMC-tree is a kind of tree that: 

1) Its root holds ∅ (means no item) and has a number of item pre-

fix subtrees, as the children of the root. 

2) Each node in the item prefix subtree holds an item i ( i ∈ L 1 ). If

the father of this node represents an item j , then j �i (we sup-

pose that ∀ i, i ∈ L 1 , ∅�i ). The portion of the path reaching this

node is represented by the itemset node − path . 

3) Each node has four fields: item − name, count, bitmap − code,

and children − list. item − name holds an item i ( i ∈ L 1 ).

count holds the number of transactions that contain the

itemset node − path. bitmap − code holds BMC ( node − path )

( Definition 5 ). children-list holds all children of this node. 

The BMC-tree for Example 1 is shown in Fig. 3 . 

efinition 7. (The “main section” and “don’t-care sec-

ion” of BMC ( node − path )). Let a node N hold an

tem i 1 , N.node − path = i k …i 2 i 1 , where i k �…�i 2 �i 1 ,

MC ( node − path ) = b nf − 1 , …, b 1 , b 0 , and the item i 1 is assigned to

he bit b m 

( m = index ( i 1 )). The bits b nf − 1 , …, b m 

are defined as the

ain section of BMC ( node − path ), and the bits b m − 1 , …, b 1 , b 0 are

efined as the don’t-care section of BMC ( node − path ). 
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Fig. 3. The BMC-tree for Example 1 . Each node label represents the item − name 

field. The number in each node represents the count field. A binary number on 

the left side of each node represents the bitmap − code field. Items in parenthe- 

ses represent the item assigned to each bit of bitmap − code . The underlined digits 

in bitmap − code represent the main section, and other bits represent the don’t-care 

section. 

 

 

 

 

 

Algorithm 1 (constructing_BMC_tree). 

Input : A transactional database DB , and a threshold min − support . 

Output : A BMC-tree ( Definition 6 ), and L 1 ( Definition 2 ). 

1. Scan DB to find F 1 ; 

2. L 1 = Sort the items of F 1 in non-descending order, with respect to 

support ( α), where α is an item. 

3. Create Tr as the root of a BMC-tree, and do the flowing assignments: 

4. Tr.item − name = ∅ ; 
5. Tr.count = 0; 

6. Tr.bitmap − code = b nf − 1 , …, b 1 , b 0 , where b i = 0, and 0 ≤ i ≤ nf − 1; 

//( Property 3 ) 

7. For each transaction T in DB do : 

8. Remove all infrequent items from T. 

9. Sort T according to the order of items in L re v erse 
1 (reverse order of L 1 ). 

//Insert T into BMC-tree 

10. current − root = Tr ; 

11. For each item i in T do : 

12. Let N be a child of current − root , in such a way that N.item − name = i ; 

13. If such node does not exist then : 

14. Create the new node N ; 

15. N.item − name = i ; 

16. N.count = 0; 

17. Add N to current − root.children − list ; 

18. Endif 

19. N.count = N.count + 1; 

20. N.bitmap − code = current − root.bitmap − code ∨ 2 index ( i ) ; //( Property 4 ) 

21. current − root = N ; 

22. Endfor 

23. Endfor 

24. Return A BMC-tree T r , and a zero-based vector L 1 ; 
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For example, see Fig. 3 . 

Property 1. Bit values in the don’t-care section of

BMC ( node − path ) have don’t-care values; hence, we can set

these bits to 0. 

Rationale. Let a node N hold an item i 1 , 

N.node − path = i k …i 2 i 1 , and B ( node − path ) = b nf − 1 , …, b 1 , b 0 . 

Each bit b in the don’t-care section of BMC ( node − path ) is 

assigned to an item like i , where i 1 �i ( Definition 7 ). According 

to the definition of a BMC-tree ( Definition 6 ), such items will 

or will not be registered in the descendant nodes of N , and we 

do not have any information about the presence or absence 

of them. Therefore, the values of these bits are not important. 

Later, we are going to find out that the don’t-care section is 

useless. �

Property 2. The 0 bit in the main section of BMC ( node − path )

means that its corresponding item does not exist in node − path . 

Rationale. Let a node N hold an item i 1 , 

N.node − path = i k …i 2 i 1 , and B ( node − path ) = b nf − 1 , …, 

b 1 , b 0 . Each bit b in the main section of B ( node − path ) is 

assigned to an item like i , where i �i 1 ( Definition 7 ). Let b = 0. 

We prove by contradiction that i 
∈ N.node − path . Suppose 

that i ∈ N.node − path . According to the definitions of bitmap 

codes ( Definition 5 ) and BMC-trees ( Definition 6 ), b must 

be 1. This contradicts the supposition that b = 0. Hence, the 

supposition i ∈ N.node − path is false, and i 
∈ N.node − path . �

Property 3. All the bits in the bitmap − code of the root of the

BMC-tree are 0. 

Property 4. Let a node N hold an item i 1 , and a node N.father be its

father node. N.bitmap − code = N. father.bitmap − code ∨ 2 index ( i 1 ) . 

Rationale. Let N.father.node − path = i k …i 2 . Accord- 

ing to the definition of a BMC-tree ( Definition 6 ), 

N.node − path = i k …i 2 i 1 . Therefore, all bits in N.bitmap − code 
o  
and N.father.bitmap − code are the same, except the 

bit assigned to the item i 1 ( index ( i 1 ) 
th bit). This bit 

in N.father.bitmap − code is a don’t-care bit, but in 

N.bitmap − code it is 1. In the binary number 2 index ( i 1 ) , 

the index ( i 1 ) 
th bit is 1 and other bits are 0. Hence, the binary 

operator ∨ turns the index ( i 1 ) 
th bit of N.bitmap − code to 1. �

Based on Definition 6 , Property 3 and Property 4 , the BMC-tree

onstruction algorithm is described in Algorithm 1 . 

According to Definition 6 , the structure of a BMC-tree is almost

he same as the structure of a POC-tree ( Deng & Lv, 2014 ), ex-

ept that in a BMC-tree, each node is encoded by BMC ( node − path ),

hile in a POC-tree, each node is encoded by its pre-order rank.

his difference is displayed in the lines 6 and 20 of Algorithm 1 . 

A BMC-tree is only used to build the set of nodes associated

ith each frequent 1-itemset. Later, we will find that after building

hese sets of nodes, the BMC-tree is useless and can be deleted. 

efinition 8. ( N − info ). Let N be a node in a BMC-tree. The

 − info of N is the pair of its bitmap − code and count fields

 bitmap − code, count ). This definition is similar to definition of

 − info in Deng and Lv (2014) . 

efinition 9. ( Nodeset ( itemset P k )). The Nodeset of itemset P k is a
et of all the N − info s of nodes like N in the BMC-tree in such a
ay that N holds the item i 1 , and each item in i k i k − 1 …i 2 is held

n one of the ancestor nodes of N . By considering Definition 5 and
efinition 6 , the Nodeset of itemset P k is defined as follows: 

odeset ( P k ) 

= 

{
T he N − in f o of N| N holds i 1 , and ∀ i j , 1 ≤ j ≤ k, 

the bit assigned to i j in N.bitmap − code is 1 

}

The Nodeset of each frequent 1-itemset for Example 1 is shown

n Fig. 4 . These Nodeset s are extracted from Fig. 3 . As two other

xamples, the Nodeset of itemsets bd and abd are shown in Fig. 5 . 

efinition 10. ( NegNodeset ( itemset P k )). Let 2 ≤ k . The NegNodeset
f itemset P k = i k P k − 1 is equal to Nodeset( P ′ 

k 
= ¬ i k P k −1 ) . Therefore,
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Fig. 4. The Nodeset of each frequent 1-itemset for Example 1 . Here, NS is the ab- 

breviation for Nodeset . 

Fig. 5. The Nodeset of itemset bd . Furthermore, the Nodeset and NegNodeset of item- 

set abd , in Example 1 . Here, NNS is the abbreviation for NegNodeset . 
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he NegNodeset of itemset P k is a set of all the N − info s of nodes
ike N in the BMC-tree in such a way that N holds the item i 1 ,
ach item in i k − 1 …i 2 is held in one of the ancestor nodes of N ,
nd the item i k is not held in any ancestor nodes of N . By consid-
ring Definitions 5 and 6 , the NegNodeset of itemset P k is defined
s follows: 

 egN odeset ( P k = i k i k −1 . . . i 2 i 1 ) = N odeset 
(
P ′ k = ¬ i k i k −1 . . . i 2 i 1 

)
= 

{ 

T he N − in f o of N 

∣∣∣∣∣
N holds i 1 , ∀ i j , 1 ≤ j ≤ k − 1 , 

the bit assigned to i j in N.bitmap − code is 1 . 

and the bit assigned to i k is 0 

} 

NegNodeset and Nodeset ( Definition 9 ) have similar definitions,

xcept that in a NegNodeset , the item i k does not appear in any

ncestor nodes of N , but in Nodeset , the item i k appears in one of

he ancestor nodes of N . For example, see Fig. 5 . 

roperty 5. support( P k ) = 

∑ 

ni ∈ Nodeset( P k ) 

ni.count ( Deng & Lv, 2014 ). 

For example, Nodeset ( b ) = {(010 0 0, 1), (110 0 0, 3)} ( Fig. 4 ),

nd Nodeset ( bd ) = {(01010, 1), (11110, 1)} ( Fig. 5 ). According to

roperty 5 , support ( b ) = 4 (1 + 3), and support ( bd ) = 2 (1 + 1). 

Rationale. Let T be a transaction that contains itemset 

P k . According to the construction algorithm of BMC-trees 

( Algorithm 1 ), T must register i k , i k − 1 ,…, i 2 , and i 1 to a series 

of nodes, N k , N k − 1 ,…, N 2 , and N 1 , respectively. In addition, N j 

must be an ancestor of N l , if j �l . According to Definition 9 , the 

N − info of N 1 must be one element in Nodeset ( P k ), which we 

denote as ni . Furthermore, according to the construction al- 

gorithm of BMC-trees, ni.count is the number of transactions 
i  
that contain the itemset P k and register the item i 1 in such 

a node N 1 . Hence, support( P k ) = 

∑ 

ni ∈ Nodeset( P k ) 

ni.count ( Deng & 

Lv, 2014 ). �

roperty 6. Let 2 ≤ k . support( P ′ k ) = 

∑ 

ni ∈ N egN odeset( P k ) 

ni.count . 

For example, in Fig. 5 , N egN odeset( abd ) = Nodeset( ¬ abd ) =
 ( 01010 , 1 ) } . According to Property 6 , support( ¬ abd ) = 1 . 

Rationale. According to Property 5 , support( P ′ k ) = ∑ 

ni ∈ Nodeset( P ′ k ) 
ni.count. Furthermore, according to Definition 10 , 

Nodeset ( P 

′ 
k ) = NegNodeset ( P k ). Hence, support( P ′ k ) = ∑ 

ni ∈ N egN odeset( P k ) 

ni.count. �

roperty 7. Let itemsets P k = i k i k − 1 P k − 2 and Q k − 1 = i k P k − 2 , and 3
k . The NegNodeset of k-itemset P k can be directly extracted from

he NegNodeset of (k-1)-itemset Q k − 1 , as follows: 

 egN odeset ( P k = i k i k −1 P k −2 ) 

= 

{
ni | ni ∈ N egN odeset ( Q k −1 = i k P k −2 ) ∧ 

the bit assigned to item i k −1 in ni.bitmap − code is 1 

}
In Example 1 , Let P 3 = bcd, Q 2 = bd, P 1 = d , and

 egN odeset( bd ) = Nodeset( ¬ bd ) = { ( 10010 , 1 ) } . According to

roperty 7 , NegNodeset ( bcd ) ( = Nodeset( ¬ bcd ) ) can be extracted

rom NegNodeset ( bd ) ( = Nodeset( ¬ bd ) ) as follows: N − info (10010,

) is a member of NegNodeset ( bd ), and its bitmap − code is 10010.

he bit assigned to the item c in this bitmap − code (the third

it from the right) is 0. Therefore, (10010, 1) is not a member of

egNodeset ( bcd ), and NegNodeset ( bcd ) = ∅ . 

Rationale. Let ni P ∈ NegNodeset ( P k ), and ni Q 

∈ 

NegNodeset ( Q k − 1 ). According to Definition 10 , all bits in 

the ni P .bitmap − code and ni Q 

.bitmap − code are the same, 

except the bit assigned to i k − 1 . This bit in ni P .bitmap − code 

is 1, but in ni Q 

.bitmap − code , it may be 0 or 1. Therefore, if 

this bit in ni Q 

.bitmap − code is 1, then ni Q 

is also a member 

of NegNodeset ( P k ). �

roperty 8. Let itemsets P k = i k P k − 1 and P ′ 
k 

= ¬ i k P k −1 , and 2 ≤ k.

upport ( P k ) = support ( P k − 1 ) − support ( P ′ k ). 

For example, in Table 1 , support ( bd ) = 2, support ( abd ) = 1, and

upport( ¬ abd ) = 1 . We find that support( abd ) = support( bd ) −
upport( ¬ abd ) . 

Rationale. All transactions in DB ( P k − 1 ) are divided into two 

groups: (1) those which contain the item i k and (2) those which 

do not contain the item i k . They have no transaction in com- 

mon. Hence, | DB ( P k −1 ) | = | DB ( i k P k −1 ) | + | DB ( ¬ i k P k −1 ) | . Con- 

sequently support( P k −1 ) = support( i k P k −1 ) + support( ¬ i k P k −1 ) , 
or support ( P k ) = support ( P k − 1 ) − support ( P 

′ 
k ). �

roperty 9. (Superset equivalence ( Deng & Lv, 2014 )). Given

temsets P and Q and an item i , where P ∩ 

Q = ∅ , i 
∈ P , and

 
∈ Q , if support(P ) = support( P ∪ 

{ i } ) , then support( P ∪ 

Q ) =
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Fig. 6. The set-enumeration tree for Example 1 . 
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Algorithm 2 (Set-enumeration tree construction). 

Input : The zero-based vector L 1 ( Definition 2 ). 

Output : A set-enumeration tree ( Definition 11 ). 

1. Create the node root ; 

2. root.level = 0; // The root is at level 0; 

3. root.children − list = ∅ ; 
4. root.item − name = ∅ ; 
5. root.itemset = ∅ ; 
6. for each item i ∈ L 1 do : 

7. Create the node child i ; 

8. child i .level = root.level + 1; 

9. child i .item − name = i ; 

10. child i .itemset = { i }; 

11. Append child i into root.children − list ; 

12. call constructing_set_enumeration_tree ( child i ); //Line 15 

13. end for 

14. return root ; 

15. procedure constructing_set_enumeration_tree ( N ) 

16. P = N.itemset ; 

17. N.children − list = ∅ ; 
18. for each item i ∈ L 1 ∧ i �N.item − name do : 

19. R = P 
⋃ { i } 

20. Create the node child i ; 

21. child i .level = N.level + 1; 

22. child i .item − name = i ; 

23. child i .itemset = R ; 

24. Append child i into N.children − list ; 

25. call constructing_set_enumeration_tree ( child i ); //Line 15 

26. end for 

27. end procedure 
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a  
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t

s  
support( P ∪ 

Q ∪ 

{ i } ) . In Table 1 , let P = ab, Q = e , and i = c. sup-

port ( ab ) = support ( abc ) = 3. Hence, support ( abe ) = support ( abce ) = 1. 

Rationale. Please see Deng and Lv (2014) . �

Definition 11. (Set-enumeration tree ( Rymon, 1992 )). Given L 1 
( Definition 2 ), a set-enumeration tree is a tree structure such that:

1) Each node N in the set-enumeration tree has two fields:

item − name and children − list. N.item − name holds an item i

( i ∈ L 1 ∪ 

{ ∅} ). N.children − list holds all children of node N . More-

over, the node N represents an itemset N.itemset . 

2) The root holds the item ∅ ( root.item − name = ∅ ) and represents

the itemset ∅ ( root.itemset = ∅ ). The child nodes of the root hold

items i , where i ∈ L 1 . 

3) For other nodes N , the child nodes of N hold items i , where

i ∈ L 1 ∧ i �N.item − name , respectively. Further, the itemset of

N is defined as N.itemset = N. father.itemset ∪ 

{ N.item − name } ,
where the node N.father is the father of node N . 

Based on Definition 11 , the pseudo-code of the set-enumeration

tree construction algorithm is described in Algorithm 2 . 

The set-enumeration tree for Example 1 is shown in Fig. 6 . For

example, in Fig. 6 , the node marked with an asterisk holds the item

b and represents the itemset bcd . 

4. negFIN: the proposed algorithm 

negFIN employs a set-enumeration tree ( Definition 11 ) to rep-

resent the search space. The framework of negFIN consists of three

steps. In the first step, the BMC-tree is constructed, all frequent

1-itemsets and their Nodeset s are identified, and level 1 of the set-

enumeration tree is constructed. In the second step, all frequent

2-itemsets and their NegNodeset s are identified, and level 2 of the

set-enumeration tree is constructed. In the third step, all frequent

k-itemsets (3 ≤ k ) and their NegNodeset s are identified, and other

levels of the set-enumeration tree are constructed. negFIN employs

the superset equivalence property ( Property 9 ) as a pruning strat-

egy. 

We demonstrate the negFIN algorithm through Example 1 . For

example, in the first step, Nodeset ( d ) and support ( d ) are computed

as follows: 

Nod eset ( d ) = { ( 01010 , 1 ) , ( 11110 , 1 ) , ( 10010 , 1 ) ( Figure 4 ) } . 
(1)
upport ( d ) = 3 ( Eq . ( 1 ) and Property 5 ) . (2)

In the second step, based on the Nodeset of 1-itemset d ( Eq. (1) )

nd according to Definition 10 , the NegNodeset of 2-itemset ad is

xtracted as follows: 

 egN odeset ( ad ) = N odeset ( ¬ ad ) = { ( 01010 , 1 ) } . (3)

support( ¬ ad ) is computed as follows: 

upport ( ¬ ad ) = 1 ( Eq . ( 3 ) , and Property 6 ) . (4)

Hence, the support of 2-itemset ad is computed as follows: 

upport ( ad ) = support ( d ) − support ( ¬ ad ) = 3 − 1 

= 2 ( Eqs . (2) and (4) , and Property 8 ) . (5)

Similarly, N egN odeset( bd ) = Nodeset( ¬ bd ) = { ( 10010 , 1 ) } , and

he suport of 2-itemset bd is computed as follows: 

upport ( bd ) = support ( d ) − support ( ¬ bd ) = 3 − 1 = 2 . (6)



N. Aryabarzan et al. / Expert Systems With Applications 105 (2018) 129–143 135 

Algorithm 3 (negFIN algorithm). 

Input : A transactional database DB and a threshold min − support . 

Output : The set of all frequent itemsets, F . 

1. F = ∅ ; 
//First step 

2. call constructing_BMC_tree ( DB, min − support )( Algorithm 1 ) to construct the 

BMC-tree and find L 1 ( Definition 2 ); 

3. F = F ∪ L 1 ; 
4. for each node N in the BMC-tree do : //Traverse the BMC-tree in an arbitrary 

order. 

5. Append the N − info of N into the Nodeset of item N.item − name ; 

6. end for 

7. Create the node root ; 

8. root.level = 0; // The root is at level 0; 

9. root.children − list = ∅ 
10. root.item − name = ∅ ; 
11. root.itemset = ∅ ; 
12. for each item i ∈ L 1 do : 

13. Create the node child i ; 

14. child i .level = root.level + 1; 

15. child i .item − name = i ; 

16. child i .itemset = { i }; 

17. Append child i into root.children − list ; 

18. call constructing_frequent_itemset_tree ( child i , ∅ ); // Algorithm 4 

19. end for 

20. return root ; 
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Algorithm 4 ( Procedure constructing_frequent_itemset_tree). 

1. procedure constructing_frequent_itemset_tree ( N, FIS parent ) 

2. P = N.itemset ; 

3. N.children − list = ∅ ; 
4. N.equi v alent _ items = ∅ ; 
5. for each item i ∈ L 1 ∧ i �N.item − name do : 

6. R = iP ; // R = P ∪ { i } 
7. R.NegNodeset = ∅ ; 
8. if N.level = 1 then : 

//Second step 

9. for each N-info ni ∈ Nodeset ( P ) do : 

10. //Checks whether the bit assigned to the item i in ni.bitmap − code 

is 0? ( Definition 10 ) 

11. if ni.bitmap − code ∧ 2 index ( i ) = 0 then : 

12. R.N egN odeset = R.N egN odeset ∪ { ni } ; 
13. end if 

14. end for 

15. else 

//Third step 

16. jX = P ; // j is the leftmost item in P and X is the remaining itemset. 

Hence, R = ijX 

17. Q = iX ; //Replace the first item in P with the item i ( i �j ). 

18. for each N-info ni ∈ NegNodeset ( Q ) do : 

19. //Checks whether the bit assigned to the item j in ni.bitmap − code 

is 1? ( Property 7 ) 

20. if ni.bitmap − code ∧ 2 index ( j ) = 1 then : 

21. R.N egN odeset = R.N egN odeset ∪ { ni } ; 
22. end if 

23. end for 

24. end if 

25. R ′ .suppor t = 

∑ 

ni ∈ N egN odeset(R ) 

ni.count;// Property 6 

26. R.support = P.support − R ′ . support ;// Property 8 

27. if R.support = P.support then : 

28. N.equi v alent _ items = N.equi v alent _ items ∪ { i } ; 
29. else 

30. if R.support ≥ | DB | × min − support then : 

31. Create the node child i ; 

32. child i .level = N.level + 1; 

33. child i .item − name = i ; 

34. child i .itemset = R ; 

35. Append child i into N.children − list ; 

36. end if 

37. end if 

38. end for 

39. SS = the set of all subsets of N.equi v alent _ items ; 

40. PSet ← { A | A = { N.item − name } ∪ Á , ́A ∈ SS} ; 
41. if FIS parent = ∅ then : 

42. FIS N = PSet ; 

43. else 

44. F I S N = { P ′ | P ′ = P 1 ∪ P 2 , P 1 ∈ PSet ∧ P 2 ∈ F I S parent } ; 
45. end if 

46. F = F ∪ F I S N ; 
47. if N.children − list 
 = ∅ then : 

48. for each child i ∈ N.children − list do : 

49. call constructing_frequent_itemset_tree ( child i , FIS N ); //Algorithm 4 

50. end for 

51. else 

52. return ; 

53. end if 

54. end procedure 
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In the third step, based on the NegNodeset of 2-itemset ad

 Eq. (3) ) and according to Property 7 , the NegNodeset of 3-itemset

bd is extracted as follows: 

 egN odeset ( abd ) = N odeset ( ¬ abd ) = { ( 01010 , 1 ) } . (7)

upport ( ¬ abd ) = 1 ( Eq . ( 7 ) , and Property 6 ) . (8) 

The support of 3-itemset abd is computed as follows: 

upport ( abd ) = support ( bd ) − support ( ¬ abd ) = 2 − 1 

= 1 ( Eqs . ( 6 ) and ( 8 ) , and Property 8 ) . (9) 

Algorithm 3 shows the pseudo-code of the negFIN algorithm. F

n line (1) holds frequent itemsets and is initialized by an empty

et. Line (2) builds the BMC-tree and L 1 , by calling Algorithm 1 .

ine (3) inserts all frequent 1-itemsets into F . Lines (4) to (6) gener-

te the Nodeset s of all frequent 1-itemsets by traversing the BMC-

ree in an arbitrary order. Lines (7) to (19) build a "frequent item-

et tree," which is similar to a set-enumeration tree ( Definition 11 ).

ines (7) to (11) build level 0 of the tree (the root). Lines (12) to

17) build level 1 of the tree through all frequent 1-itemsets in L 1 .

ine (18) builds levels k (2 ≤ k ) of the tree and generates all fre-

uent k-itemsets by recursively calling the procedure construct-

ng_frequent_itemset_tree () ( Algorithm 4 ). This procedure is sim-

lar to the procedure constructing_set_enumeration_tree (), which

s presented in Algorithm 2 . 

Procedure constructing_frequent_itemset_tree () has two pa-

ameters: N and FIS parent . N is the current node in frequent itemset

ree. FIS parent is used to hold the frequent itemsets generated on

he parent of N. P in line (2) holds the itemset represented by N .

ines (5) to (38) extend P by the item i . The extended itemset is

enoted as R in line (6). Lines (8) to (24) generate the NegNode-

et of R . If R is a 2-itemset ( N is at level 1), then the NegNode-

et of R is extracted from the Nodeset of P ( Definition 10 ), as lines

8) to (15) do. Line (11) checks whether the condition specified in

efinition 10 is true. If R is a k-itemset (3 ≤ k ), then the NegNode-

et of R is extracted from the NegNodeset of P ( Property 7 ), as lines

15) to (24) do. Line (20) checks whether the condition specified

n Property 7 is true. Line (25) employs Property 6 to compute the

upport of Ŕ. Line (26) employs Property 8 to compute the support

f R . Lines (27) to (37) look for items that can be used to build
he child nodes of N . Line (27) checks whether the condition spec-

fied in the "superset equivalence property" ( Property 9 ) is true. If

his condition is true, then the item i is a promoted item ( Deng

 Lv, 2014 ). A promoted item is held in N.equi v alent _ items , for fu-

ure use, in line (28); the promoted items are not used to build the

hild nodes of N , because all information about the frequent item-

ets related to these items are held in N . This pruning strategy is

alled promotion ( Deng & Lv, 2014 ). Line (30) checks whether the

temset R is frequent. If so, then lines (31) to (35) use the item i

o create a child node of N . Lines (39) to (45) identify all frequent

temsets in N , denoted as FIS N . If FIS parent is empty, then FIS N is the

ame as PSet . Otherwise, FIS N is extracted from PSet and FIS parent ,

s line (44) does. Lines (47) to (51) extend the child nodes of N by
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Fig. 7. Runtime of three algorithms, negFIN, FP-growth ∗ , and Goethals’s Eclat, on different datasets, depending on the minimum support. 
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calling constructing_frequent_itemset_tree () ( Algorithm 4 ) recur-

sively. 

The time-consuming part of the negFIN algorithm ( Algorithm 3 )

is the construction of the frequent itemset tree. The first part

of the negFIN algorithm is the construction of the BMC-tree

( Algorithm 1 ). In the worst case, the time complexity of this part is

O ( nt × nit × log nit ) (the time complexity of the loop in line (7) of

Algorithm 1 ), where nt = | DB | and nit = | I |. The second part is the

generation of the Nodeset s of all frequent 1-itemsets. In the worst

case, the time complexity of this part is O (2 nit ) (the time complex-

ity of traversing the BMC-tree). The third part is the construction

of the frequent itemset tree. Levels k (2 ≤ k ) of this tree are con-

structed by Algorithm 4 . To construct each node at these levels,

first, the NegNodeset of the itemset assigned to that node is gen-

erated from one set of nodes with cardinality n , as the loops in

lines (9) and (18) of Algorithm 4 do. The time complexity of these

loops is O ( n ). Second, the support of the itemset assigned to that

node is computed. In the worst case, the time complexity of this

operation is O ( n ) (the time complexity of line (25) of Algorithm 4 ).

Third, it is checked whether the itemset assigned to that node is

frequent. The time complexity of this operation is O (1). Hence, in

the worst case, the time complexity of the third part of the negFIN

algorithm is O (2 nit n ), where 2 nit is the maximum number of nodes

in the frequent itemset tree. 

The time complexity of the negFIN algorithm is equal to the

time complexity of the third part since this part has the great-

est time complexity among other parts. Let l be the number of

o  
odes at levels k (2 ≤ k ) of the frequent itemset tree. Hence, the

ime complexity of the negFIN algorithm is O ( ln ). Parameter l is the

ame for negFIN and the previous works ( Deng, 2016; Deng & Lv,

014; Deng & Wang, 2010; Deng et al., 2012 ). The time complex-

ty of the previous works ( Deng, 2016; Deng & Lv, 2014; Deng &

ang, 2010; Deng et al., 2012 ) is O ( l ( x + y )), where x and y are the

ardinality of two sets of nodes and O ( x + y ) is the time complexity

f generating a new set of nodes. 

. Results of experiment and analysis 

In order to evaluate the performance of the negFIN algorithm,

e conducted two groups of experiments. The purpose of the first

roup of experiments is to compare the performance of the negFIN

lgorithm against the following algorithms: (1) Goethals’s Eclat

 Goethals & Zaki, 2004 ), which is the state-of-the-art algorithm in

he family of vertical mining algorithms ( Deng et al., 2012 ), and

2) FP-growth 

∗ ( Grahne & Zhu, 2005 ), which is the state-of-the-

rt algorithm in the family of FP-tree-based pattern growth algo-

ithms ( Deng et al., 2012 ). Both of these algorithms are used as

omparison algorithms in ( Deng, 2016 ). In the second group of ex-

eriments, we conducted comprehensive experiments to compare

he performance of the negFIN algorithm against the dFIN algo-

ithm ( Deng, 2016 ) separately, since (1) both algorithms belong to

he same family of algorithms (nodeset-based algorithms), and (2)

FIN is the fastest algorithm among its family and other families

f frequent itemset mining algorithms at present ( Deng, 2016 ). The
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Fig. 8. Memory consumption of three algorithms, negFIN, FP-growth ∗ , and Goethals’s Eclat, on different datasets, depending on the minimum support. 

Table 2 

Description of the datasets used. 

Dataset Type # Items # T ransactions # A v g. Length 

accidents Real 468 340,183 33.8 

chess Real 75 3,196 37 

connect Real 129 67,557 43 

kosarak Real 41,270 990,002 8.1 

mushroom Real 119 8,124 23 

pumsb Real 2113 49,046 74 

retail Real 16,469 88,162 10.3 

T10I4D100K Synthetic 949 98,487 10 
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esults generated by all these algorithms are the same. But these

lgorithms are different with regards to runtime and memory con-

umption. 

.1. Datasets 

We ran the comparison algorithms on seven real datasets,

hich are common datasets from previous frequent itemset mining

tudies, and one synthetic dataset. These datasets can be down-

oaded from the FIMI repository ( http://fimi.ua.ac.be ). The descrip-

ion of these datasets is shown in Table 2 . In this table, # Items is

he number of items, # T ransactions is the number of transactions,

nd # A v g.Length is the average transaction length. These seven real

atasets are usually very dense. The synthetic dataset T10I4D100K
s much sparser than these real datasets. This dataset is generated

y the IBM generator, which can be downloaded from http://www.

lmaden.ibm.com/cs/quest/syndata.html . To generate this dataset,

he average transaction size, the average maximal potentially fre-

uent itemset size, the number of transactions in the dataset, and

he number of different items used in the dataset are set to 10, 4,

8487, and 949 respectively. 

.2. Running environment 

In order to make a fair comparison, all these experiments were

onducted in the same software and hardware conditions. We used

 computer with 8 GB memory and an Intel Core i5 3.0 GHz pro-

essor, with the Windows 10 x64. Standard Edition operating sys-

em. All these algorithms are coded in C/C ++ . The implementation

f FP-growth 

∗ and Goethals’s Eclat are available at http://fimi.ua.ac.

e/src/ and http://adrem.ua.ac.be/ ∼goethals/software/ respectively 

available since August 2017) ( Deng, 2016 ). Also we have made

he source codes of dFIN and negFIN algorithms publicly avail-

ble on GitHub via https://github.com/aryabarzan/dFIN and https:

/github.com/aryabarzan/negFIN/ respectively. 

.3. negFIN versus FP-growth ∗ and Goethals’s Eclat 

The purpose of this group of experiments is to compare the

untime and memory consumption of negFIN algorithm against the

http://fimi.ua.ac.be
http://www.almaden.ibm.com/cs/quest/syndata.html
http://fimi.ua.ac.be/src/
http://adrem.ua.ac.be/~goethals/software/
https://github.com/aryabarzan/dFIN
https://github.com/aryabarzan/negFIN/
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Fig. 9. The average cardinality of sets of nodes such that each NegNodeset and DiffNodest of k-itemset (2 ≤ k ) is derived from them and the average number of key operations 

required to derive each NegNodeset and DiffNodest , which is denoted as KOD , for different datasets, depending on the minimum support. Here, KOD is the abbreviation for 

key operations in each derivation. 
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FP-growth 

∗ and Goethals’s Eclat algorithms. We conducted these

experiments on five datasets—chess, pumsb, kosarak, mushroom,

and T10I4D100 K—with various values of minimum support. 

5.3.1. Runtime comparison 

The runtime comparison of negFIN against FP-growth 

∗ and

Goethals’s Eclat are shown in Fig. 7 . In this figure, the X and Y

axes are minimum support and runtime, respectively. The runtime

is the time for which the algorithm ran. 
As we can see in Fig. 7 , negFIN substantially surpasses FP-

rowth 

∗ and Goethals’s Eclat on three datasets: chess, pumsb, and

osarak. Although negFIN runs faster than these algorithms on two

atasets—mushroom and T10I4D100K—there is no significant dif-

erence between negFIN and these two algorithms. 

.3.2. Memory consumption comparison 

The memory consumption comparison of negFIN against FP-

rowth 

∗ and Goethals’s Eclat are shown in Fig. 8 . In this figure,
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Fig. 10. The number of derived NegNodeset s and DiffNodeset s for different datasets, depending on the minimum support. 
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he Y axis is the peak memory consumption, which is measured

y the PeakWorkingSetSize function in C/C ++ . 

As we can see in this figure, negFIN consumes more memory

han these two algorithms on the chess and pumsb datasets when

inimum support is low. The reason is that the main components

f memory consumption in negFIN and FP-growth 

∗ are BMC-tree

nd FP-tree, respectively. Since the node of the BMC-tree is a little

igger than the node of the FP-tree, it holds more information (the

itmap − code field) than the node of the FP-tree. Hence, the BMC-

ree consumes a little more memory than the FP-tree. In addition,
egFIN maintains a BMC-tree while generating the NegNodeset s of

requent 1-itemsets. 

Again, take Fig. 8 into account. We observe that negFIN and FP-

rowth 

∗ consume almost the same amount of memory for high

inimum support on the chess and pumsb datasets, and for all

inimum support on the kosarak, mushroom, and T10I4D100K

atasets. Goethals’s Eclat consumes more memory than negFIN and

P-growth 

∗ for high minimum support on the pumsb and mush-

oom datasets, and for all the minimum support on the kosarak

nd T10I4D100K datasets. 
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Fig. 11. Runtime comparison of negFIN against dFIN for different datasets, depending on the minimum support. 
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5.4. negFIN versus dFIN 

In this section, we compare negFIN with dFIN based on three

aspects: (1) the number of key operations, (2) the runtime, and (3)

the memory consumption. 

5.4.1. Number of key operations 

In the negFIN (dFIN) algorithm, each NegNodeset ( DiffNodeset )

of k-itemset ( k ≥ 2) P is derived from one set (two sets) of

nodes. Let S 
N egN odeset 
1 

be a set of nodes such that the NegNode-

set of P is derived from it, and | S N egN odeset 
1 

| = n negF IN . Furthermore,
et S 
Di f f Nodeset 
1 

and S 
Di f f Nodeset 
2 

be two sets of nodes such that the

iffNodeset of P is derived from them, | S Di f f Nodeset 
1 

| = n dF IN , and

 S 
Di f f Nodeset 
2 

| = m 

dF IN . The time complexity of deriving the NegN-

deset and DiffNodeset of P are O ( n negFIN ) and O ( n dFIN + m 

dFIN ) re-

pectively. The time-consuming component of negFIN (dFIN) is the

erivation of these NegNodeset s ( DiffNodeset s). Let l negFIN and l dFIN 

e the number of derived NegNodeset s and DiffNodeset s respec-

ively. Consequently, the time complexity of negFIN and dFIN are

 ( l negFIN n negFIN ) and O ( l dFIN ( n dFIN + m 

dFIN )) respectively. 
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Fig. 12. Memory consumption comparison of negFIN against dFIN for different datasets, depending on the minimum support. 
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In Fig. 9 , the average of n negFIN , n dFIN , m 

dFIN , and the average

umber of required key operations to drive the NegNodeset ( DiffN-

deset ) of each k-itemset ( k ≥ 2) are shown. The average num-

er of key operations is denoted as KOD (the abbreviation for k ey

 perations in each d erivation). Here, the key operation is the loop

xecution. Therefore, KOD is the average number of times when

he loop is executed. 

By examining Fig. 9 , the following results are obtained: (1) The

verage number of key operations to drive NegNodeset is equal to

 

negFIN . Therefore, the derivation of NegNodeset has a time complex-
ty of O ( n negFIN ). (2) The average number of key operations to drive

iffNodest is between n dFIN and ( n dFIN + m 

dFIN ). Thus, the deriva-

ion of DiffNodeset has a time complexity of O ( n dFIN + m 

dFIN ). (3)

 

dFIN ≤ m 

dFIN . (4) n negFIN = n dFIN . For simplicity, we use the nota-

ion n instead of n negFIN and n dFIN , and the notation m instead of

 

dFIN . We conclude from (1) to (4) that: (5) the time complexity of

he derivation of each NegNodeset is O ( n ), (6) the time complexity

f the derivation of each DiffNodeset is O ( n + m ), and (7) n ≤ m .

ence, the overall result is that the NegNodeset of the itemset is
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generated about two orders of magnitude faster than its DiffNode-

set . 

In Fig. 10 , l negFIN and l dFIN are presented for different datasets.

As we can see in this figure, l negFIN = l dFIN for all datasets. For sim-

plicity, we use the notation l instead of l negFIN and l dFIN . Hence, the

time complexity of negFIN and dFIN are O ( ln ) and O ( l ( n + m )), ( n ≤
m ) respectively. 

5.4.2. Runtime comparison 

Fig. 11 shows the runtime comparison of negFIN against dFIN.

As we can see in this figure, negFIN is not slower than dFIN on all

datasets. negFIN runs faster than dFIN on some datasets, especially

for low minimum support. The reason is as follows: the time com-

plexity of negFIN and dFIN are O ( ln ) and O ( l ( n + m )) respectively.

As we can see in Fig. 9 , both n and m are small values. Hence, the

difference between ln and l ( n + m ) is negligible for small values of

l . Again, consider Figs. 10 and 11 . As we can see in these figures, for

datasets such as chess, pumsb, and accidents, where l has a large

value, the difference between the runtimes of negFIN and dFIN is

important. 

5.4.3. Memory consumption comparison 

Fig. 12 shows the memory consumption comparison of negFIN

against dFIN. As we can see in this figure, the memory consump-

tion of both algorithms is roughly the same. 

6. Conclusion 

In this paper, we presented a new data structure, called Neg-

Nodeset , to store essential information about frequent itemsets.

Based on NegNodeset , we present an algorithm, called negFIN, to

rapidly discover all frequent itemsets in databases. Compared with

nFIN, the key advantages of negFIN are as follows: (1) it employs

bitwise operators to generate new sets of nodes. (2) It reduces the

time complexity of discovering frequent itemsets to O ( ln ), instead

of O ( l ( m + n )), where m and n are the cardinality of two base sets

of nodes, n ≤ m , and l is the number of generated sets of nodes.

We implement the negFIN and dFIN algorithms and conduct ex-

tensive experiments to compare the performance of negFIN against

several state-of-the-art frequent itemset mining algorithms. These

experiments show that our algorithm is the fastest algorithm on all

datasets with different minimum supports in comparison with pre-

vious state-of-the-art algorithms. However, on some datasets with

some minimum supports, our algorithm runs with the same speed

as dFIN. 

7. Future research directions 

Future research directions are as follows: employing NegNode-

set to (1) mine "closed frequent itemsets" ( Le & Vo, 2015; Lee,

Wang, Weng, Chen, & Wu, 2008; Wang, Han, & Pei, 2003 ), (2) mine

"maximal frequent itemsets" ( Burdick, Calimlim, Flannick, Gehrke,

& Yiu, 2005; Roberto & Bayardo, 1998 ), (3) mine "Top-Rank-k fre-

quent itemsets" ( Deng, 2014; Huynh-Thi-Le, Le, Vo, & Le, 2015 ), (4)

mine "erasable itemsets" ( Le, Vo, & Nguyen, 2014 ), (5) mine "fuzzy

itemsets" ( Lan et al., 2015; Lin et al., 2015 ), (6) mine "frequent dis-

junctive closed itemsets" ( Vimieiro & Moscato, 2014 ), (7) mine fre-

quent itemsets over data streams ( Calders et al., 2014; Chang &

Lee, 2003; Li & Deng, 2010; Troiano & Scibelli, 2014 ), (8) mine fre-

quent itemsets on Hadoop ( Kovács & Illés, 2013; Xun, Zhang, Qin,

& Zhao, 2017 ), and (9) mine frequent itemsets under other dis-

tributed/parallel systems ( Sohrabi & Barforoush, 2013 ). 
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