Příloha 4

MANUÁL PRO PRÁCI SE ZAŘÍZENÍM EMOTIV EPOC+ A NÁSLEDNÉ ZPRACOVÁNÍ A ANALÝZU EEG DAT

OBSAH

1	ÚDR.	ŽBA ZAŘÍZENÍ EMOTIV EPOC+	4
	1.1	NABÍJENÍ HEADSETU	5
	1.2	HYDRATACE HEADSETU	5
2	MĚŘI	ENÍ DAT	6
	2.1	INFORMOVANÝ SOUHLAS	6
	2.2	NASAZENÍ SENZORŮ	6
4	2.3	SPÁROVÁNÍ HEADSETU S POČÍTAČEM	6
	2.4	INSTALACE ZAŘÍZENÍ NA HLAVU	7
4	2.5	AKTIVACE SENZORŮ	7
	2.6	EXPERIMENT	8
3	PŘED	DZPRACOVÁNÍ DAT	9
4	3.1	IMPORT DAT	9
4	3.2	NAHRÁNÍ SOUBORU .CED	10
4	3.3	ODSTRANĚNÍ ARTEFAKTŮ	12
4	3.4	ANALÝZA NEZÁVISLÝCH KOMPONENT	12
4	3.5	ODSTRANĚNÍ KOLÍSÁNÍ NULOVÉ IZOLINIE	13
	3.6	FILTRACE DO VLNOVÝCH PÁSEM	13
4	3.7	EXPORT DAT	14

	3.8	SKRIPT	15
4	EXTR	AKCE CHARAKTERISTICKÝCH RYSŮ	16
	4.1	IMPORT DAT	16
	4.2	FOURIEROVA TRANSFORMACE	17
	4.3	VÝKONNOVÉ SPEKTRUM SIGNÁLU	17
	4.4	PRŮMĚRNÁ HODNOTA VÝKONOVÉHO SPEKTRA	17
	4.5	EXPORT DAT	18
	4.6	SKRIPT	18
5	KLAS	IFIKACE DAT	19
	5.1	PŘÍPRAVA DAT	19
	5.2	TRÉNOVÁNÍ DAT	19
	5.3	EXPORT KLASIFIKAČNÍHO MODELU	21
	5.4	POUŽITÍ KLASIFIKAČNÍHO MODELU	22

1 ÚDRŽBA ZAŘÍZENÍ EMOTIV EPOC+

EPOC+ je bezdrátový 14kanálový EEG neuroheadset sloužící zejména pro BCI aplikace, ale jeho nadstavbou je i vestavěné měření úrovní vybraných emocí. Součástí balení nutného pro provoz zařízení jsou:

- Headset se zabudovaným lithiovým akumulátorem (obr. 1.1),
- USB bezdrátový přijímač (obr. 1.2),
- balení 16 vyměnitelných senzorů (obr. 1.3),
- solný roztok (obr. 1.4),
- kabel s mini USB konektorem (obr. 1.5).

Obr. 1.3: Balení 16 vyměnitelných senzorů

Obr. 1.1: Headset Emotiv EPOC+

Obr. 1.2: USB bezdrátový přijímač

Obr. 1.4: Solný roztok

Obr. 1.5: Kabel s mini USB konektorem

Pro úspěšné provozování headsetu Emotiv EPOC+ je nutné provádět dva kroky údržby – nabíjení a hydratace senzorů.

1.1 NABÍJENÍ HEADSETU

Nabíjení headsetu se provádí pomocí kabelu s mini USB konektorem (obr. 1.6). Doba plného nabití baterie jsou přibližně 4 hodiny. Při nabíjení se v zadní části headsetu rozsvítí červená LED dioda. Pokud je zařízení plně nabito, změní se barva diody na zelenou. Nabíjení musí být prováděno pouze pokud je headset vypnut.

Obr. 1.6: Nabíjení headsetu pomocí mini USB kabelu

Obr. 1.7: Hydratace senzorů solným roztokem

1.2 HYDRATACE HEADSETU

Senzory, které se připevňují na headset, musí být při měření dat navlhčené z důvodu zlepšeného přenosu signálu. K průběžné hydrataci senzorů slouží hydratační balení s polštářkem, který se musí napustit solným roztokem (obr. 1.7). Kvůli dlouhodobé hydrataci senzorů je možné, že na nich vznikne ušlechtilá rez zelené barvy jako produkt solného roztoku a polymeru na senzoru. Taková rez je naprosto přirozená a neměla by ovlivnit kvalitu měření. Odstranění rzi je možné pomocí vatových tamponů napuštěných isopropylalkoholem. Není přípustné oddělávat rez ostrými předměty, které mohou kromě rzi odstranit i vrstvu vodivého kovu, čímž by mohlo dojít k porušení funkčnosti senzoru.

2 MĚŘENÍ DAT

V následující kapitole jsou popsány úkony, které jsou důležité pro samotné měření dat.

2.1 INFORMOVANÝ SOUHLAS

Před samotným experimentem, ve kterém bude účastníkům měřeno EEG, je nutné požádat účastníka o podepsání formuláře informovaného souhlasu. Tento formulář je nutné dát k podepsání před každým EEG experimentem. Získání podepsaného formuláře je nutné vzhledem ke skutečnosti, že EEG data se považují za osobní a citlivá data. Ve formuláři by se měly objevit informace o průběhu experimentu, o zacházení s daty

v souladu se zákonem o ochraně osobních údajů a o tom, že se nejedná o diagnostické vyšetření a nelze tedy zjistit případné mozkové poruchy, které by tam mohly být. Vzor informovaného souhlasu je připojen k diplomové práci jako Příloha 1.

2.2 NASAZENÍ SENZORŮ

Před nasazením senzorů na headset je nutné zkontrolovat zda jsou z hydratačního balení dostatečně vlhké. Pokud nejsou, je třeba na ně přidat 2–3 kapky solného roztoku, což zapříčiní jejich plné nasáknutí. Poté je již možné senzory nasadit na headset. Nasazení probíhá formou přiložení senzoru k "pacičce" headsetu a pootočení senzoru do pevné polohy (obr. 2.1). Po dokončení měření je nutné senzory z headsetu sejmout a uložit zpět do hydratačního balení.

2.3 SPÁROVÁNÍ HEADSETU S POČÍTAČEM

Dalším nutným krokem je spárování headsetu s počítačem. To probíhá bezdrátově pomocí Bluetooth® Smart technologie. Headset obsahuje zabudovaný bluetooth vysílač, na straně počítače je pak příjem zajištěn pomocí USB bezdrátového přijímače. Spárování je

EPOC Control Panel

Application Tool Connect Help

ENGINE STATUS

provedeno zasunutím USB bezdrátového přijímače do zdířky počítače a zapnutím headsetu. Informace, zda spárování proběhlo úspěšně či neúspěšně, je viditelná v horní části startovacího okna softwaru EPOC Control Panel™ (obr. 2.2).

Obr. 2.2: Informace o kvalitě spárovaného signálu v prostředí softwaru EPOC Control panel™

REMOVE USER

Emotiv Use

SAVE USER

USER STATUS

ADD USER

leadset

Software použitý v kapitole:

- EPOC Control Panel™
- SMI Experiment Center™ Software
- SMI BeGaze™ Eye Tracking Analysis Software

epoc control panel

2.4 INSTALACE ZAŘÍZENÍ NA HLAVU

Po propojení headsetu s počítačem je možné jej instalovat na účastníkovu hlavu. Správné umístění headsetu na hlavu je klíčové. Každý senzor má své kódové označení, které reprezentuje konkrétní umístění na lebce. Operátor by měl headset nasadit účastníkovi na hlavu takovým způsobem, kdy pomocí obou rukou pomalým pohybem shora dolů tlačí na headset, který se účastníkovi sesune do správné pozice (obr. 2.3). Kontrolními body pro správné usazení senzorů jsou skalní kosti, na kterých by měly ležet senzory s gumovými polštářky (obr. 2.4). Dva přední senzory (F3, F4) by měly ležet ve vzdálenosti tří prstů od nadočnicového oblouku účastníka (obr. 2.5).

Obr. 2.3: Nasazení headsetu na hlavu

Obr. 2.5: Umístění předních senzorů

Obr. 2.4: Umístění senzorů s gumovými polštářky na skalní kosti

2.5 AKTIVACE SENZORŮ

Po nasazení je třeba aktivovat senzory, které již byly napuštěny solným roztokem. Aktivace se provádí lehkým stiskem referenčních elektrod (pozice P3 a P4) a jejich přidržením po dobu 10 až 20 vteřin (obr. 2.6). Během té doby by se měla v softwaru Epoc Control Panel[™] zobrazit aktivita a kvalita signálu na jednotlivých senzorech. Úroveň kvality signálu je znázorněna pěti barvami (obr. 2.7) – černá (žádný signál), červená (velmi slabý signál), oranžová (slabý signál), žlutá (dostatečný signál), zelená (ideální signál) – přičemž kvalita signálu na senzoru by měla pro úspěšné měření dosahovat nejhůře žluté barvy. Ve většině případů se nepovede aktivace senzorů na první pokus. V takovém případě je řešením sejmout headset z hlavy, znovu hydratovat senzory a provést opětovnou instalaci headsetu na hlavu.

Obr. 2.6: Referenční senzory, kterými se aktivuje přenos na ostatních senzorech

	ENGINE STATUS		USER STATUS					
	System Status: System Up Time	Emotiv Engine is ready 115.654	neauset:		asha237	- 0	noc control nanel	10.
"	Wireless Signal	Good		EMONE DEEP	CAVE DEEP		poo controi punci	0
	Batery Power	High	ADD USEN IN	LPIDYL OJLK	SPACE COLL			-
adeat Salur	Exprocely Fulto	Afforthy Suito Coonith	Suito Mouro F	mulator				
abset Settin	Expressiv Suite	Arrectiv Suite Cognitiv	Suice Mouse E					
atus 174	1			arablam par	criste this may indi	cato a pro	blom with the Emoter bandget	
				stoblem per	isists, this may mai	cate a pro	blem with the Emotiv headset.	
				ora, Ora	ange or Red: The	sensor is	not making good contact with your	
			S	scalp. Chec	k that the felt pad i	is making	comfortable but firm contact with yo	ur
	1		s	scalp. If the	e contact is adequa	te, ensure	that the felt pad is moist. If the	2
			5	sensor's ind	icator color become	es igniter,	the signal quality is improving. If the	8
			3	problome et	ill parciet the partie	ng udi kei,	in the vicinity of the electrode on the	
			6	elt pad mal	kes better contact v	with your s	calo.	<
	-	- N						
K			Ste	ep 7 Repea	at Step 6 for each o	of the rem	aining electrodes until all the sensor	5
1)		41	hav	/e adequate	e contact quality. A	lithough th	e majority of indicators should displa	iγ
U			gre	en, the Em	otiv detections will	usually to	erate input from up to several senso	rs
1	-			ose marcate	or s dispidy yeading.			
1			If a	at any time	e the reference s	sensors (located just above and behind	
			You	ur ears) n	o longer have a g	good con	nection (i.e. are not showing	-
	~	-/	gre	een), imme	ediately restore t	those ser	isors to green before proceedin	9 -
	1	-	Tur	uner.				
								the second se

Obr. 2.7: Zobrazení kvality signálu na senzorech v prostředí Epoc Control Panel™

2.6 **EXPERIMENT**

Spuštění samotného experimentu probíhá v softwaru SMI Experiment Center™ Software. Pro export dat slouží software SMI BeGaze™ Eye Tracking Analysis Software. Vzhledem k potřebám dalších kroků zpracování dat je nutné nastavit výstupní formát dat jako .TXT. Další exportní možnosti jako .EDF+ jsou také možné, ale pro zpracování obtížnější.

3 PŘEDZPRACOVÁNÍ DAT

Následujícím krokem po naměření dat je předzpracování dat. Hlavním smyslem předzpracování dat je jejich úprava do takové podoby, aby na nich mohla být provedena následná analýza. Celý proces předzpracování dat probíhá v softwaru EEGLAB¹, což je toolbox pro Matlab s GUI (obr. 3.1) sloužící pro zpracování a vizualizaci EEG dat.

3.1 IMPORT DAT

Pro import dat do toolboxu EEGLAB je důležité mít upravený .TXT soubor, který byl získán po naměření dat. Důležité je data rozdělit do více textových souborů pro každého účastníka a každý stimul. Textové soubory musí mít takovou strukturu, kdy v nich je pouze 14 sloupců reprezentující hodnoty z každého senzoru headsetu. Je nepřípustné, aby byly v souboru názvy sloupců či sloupec s údaji o čase. Po upravení souborů do takové podoby je možné je nahrát do prostředí toolboxu EEGLAB pomocí nástroje *From ASCII/float file or Matlab array:*

• File > Import Data > Using EEGLAB functions and plugins > From ASCII/float file or Matlab array.

Po zvolení této funkce se objeví okno, kde je nutné vybrat soubor, který má být nahrán (Data file/array), nastavit jméno souboru pro prostředí toolboxu (Dataset name) a nastavit hodnotu záznamové frekvence v níž byla data naměřena (Data sampling rate (Hz)) (obr. 3.2).

Data file/array (click on the selected option) Dataset name	ASCII text	file C:\Users\Ada EEG_test	m\Desktop\ Browse
Data sampling rate (Hz)	250	Subject code	
Time points per epoch (0->continuous)	0	Task condition	
Start time (sec) (only for data epochs)	0	Session number	
Number of channels (0->set from data)	0	Subject group	
Ref. channel indices or mode (see help)		About this dataset	Enter comments
Channel location file or info	From othe	er dataset	Browse
(note: autodetect file format using file extension	on; use menu "E	dit > Channel locations" for mo	re importing options)
ICA weights array or text/binary file (if any):	From othe	er dataset	Browse
ICA sphere array or text/binary file (if any):	From othe	er dataset	Browse

Obr. 3.2: Nastavení parametrů při nahrávání .TXT souboru do toolboxu EEGLAB

-

• EEGLAB toolbox for Matlab

EEGLAB	v13.6.5b						-	×
Edit	Tools	Plot	Study	Datasets	Help			ĸ
Edit	- 0 - 0 	Plot Creat Or File File Prune Rejec Remov	study datas "File "File ", > Imp > Imp > Sav data: data: e base	Datasets Set w or low > Import > Load e ort epoc ort even aset in: "Edit : :: "Tools :: "Tools :line: ":	Help ad an ex t data" existing ch info" nt info" fo" (add et" (sav > Select s > Reje > Extra Lools >	datase (data (cont) /edit e datas data" ct ct epoc Remove	et" inuous set) chs"	
	- I	Run I	CA:	"Tools	> Run I	CA"		

Obr. 3.1: Startovací okno toolboxu EEGLAB

Hodnota sampling rate je odvozeno od záznamové frekvence zařízení Emotiv EPOC+. Pokud je při experimentu zařízení propojeno i s eye-trackerem, přebírá frekvenci eyetrackeru.

3.2 NAHRÁNÍ SOUBORU .CED

Dalším krokem je lokalizace jednotlivých senzorů na lebce. Pro tuto lokalizaci je nutné mít soubor s údajemi o pozici každého senzoru na lebce. Jedná se o soubor formátu .CED, který lze otevřít a upravovat v libovolném textovém editoru. Struktura souboru včetně vyplněných hodnot o poloze senzorů je zobrazena na str. 11 a také je dostupná v elektronické formě jako součást DVD Přílohy 6 diplomové práce. Tento soubor lze nahrát pomocí nástroje *Channel locations:*

• Edit > Channel locations.

Po kliknutí na nástroj se objeví okno s dotazem, zda chceme vyhledat lokaci kanalů. Zde je důležité zvolit možnost *Cancel* (obr. 3.3). Poté se otevře nové okno, kde je možné editovat lokaci jednotlivých kanálů. V tomto okně se zvolí načtení lokací (Read locations) a zvolí se cesta k souboru .CED (obr. 3.4). Po potvrzení cesty a zanechání možnosti automatické detekce (autodetect) se načtou lokace jednotlivých senzorů.

🕢 Look up channel locations? -	- [×
Only channel labels are present currently, but some of these labels have kn positions. Do you want to look up coordinates for these channels using the file below? If you have a channel location file for this dataset, press cancel, use button "Read location" in the following gui. If you do not know, just pres	own electr then s OK.	ode	
use BESA file for 4-shell dipfit spherical model			1
C:\Users\Adam\Desktop\diplomka\eeglab_current\eeglab13_6_]
Help	0	k]

Obr. 3.3: První okno, které se zobrazí po zvolení nástroje Channel locations

Obr. 3.4: Nahrání souboru .CED

Number	labels	theta	radius	Х	Y	Z	sph_theta	sph_phi	sph_radius	type
1	AF3	-23	0.411	0.885	0.376	0.276	23	16	1	1
2	F7	-54	0.511	0.587	0.809	-0.0349	54	-2	1	2
3	F3	-39	0.333	0.673	0.545	0.5	39	30	1	3
4	FC5	-69	0.394	0.339	0.883	0.326	69	19	1	4
5	т7	-90	0.511 0	6.12e-17	0.999	-0.0349	90	-2	1	5
6	P7	-126	0.511	-0.587	0.809	-0.0349	126	-2	1	6
7	01	-162	0.511	-0.95	0.309	-0.0349	162	-2	1	7
8	02	162	0.511	-0.95	-0.309	-0.0349	-162	-2	1	8
9	P8	126	0.511	-0.587	-0.809	-0.0349	-126	-2	1	9
10	Т8	90	0.511 0	6.12e-17	0.999	-0.0349	-90	-2	1	10
11	FC6	69	0.394	0.339	-0.883	0.326	-69	19	1	11
12	F4	39	0.333	0.673	-0.545	0.5	-39	30	1	12
13	F8	54	0.511	0.587	-0.809	-0.0349	-54	-2	1	13
14	AF4	23	0.411	0.885	-0.376	0.276	-23	16	1	14

3.3 ODSTRANĚNÍ ARTEFAKTŮ

Odstranění artefaktů by mělo být nedílnou součástí předzpracování. Pro odstranění artefaktů lze použít vícero metod, avšak žádná kombinace nepovede k absolutnímu odstranění artefaktů. Přílišné odstranění artefaktů naopak není žádoucí, neboť i data ovlivněná artefaktem mohou nést užitečnou informaci. Jako jedna z variant pro odstranění artefaktů se jeví nástroj *Reject continuous data by eye:*

• Tools > Reject continuous data by eye.

Po zapnutí nástroje se objeví okno s časovým záznamem průběhu EEG dat. Pomocí tahu myší lze označit úsek dat, který je zarušen artefakty a odstranit ho pomocí tlačítka Reject (obr. 3.5). Taková metoda, při které se označí a smaže časový úsek dat pouze na základě vizuálního vjemu, vyžaduje hlubokou a několikaletou znalost v oblasti elektroencefalografie. Další nevýhodou tohoto nástroje je jeho časová náročnost, kdy by se musel u každého textového souboru prohlížet záznam dat a hodnotit, zda se vyskytují artefakty či nikoliv.

3.4 ANALÝZA NEZÁVISLÝCH KOMPONENT

Způsobem, jak odstranit část artefaktů, je použití nástroje Run ICA:

• Tools > Run ICA.

V oblasti zpracování signálů může velice často nastat problém, kdy naměřené signály jsou ovlivněny nějakým faktorem a neodpovídají tedy signálům původním. Jako tento faktor může vystupovat např. nízká selektivita senzoru, která způsobí, že výstup ze senzoru je ve skutečnosti kombinací více signálů. Analýza nezávislých komponent je metoda separace signálů, která odděluje smíchané nezávislé signály. Při spuštění nástroje Run ICA se nastavuje algoritmus, kterým analýza proběhne (obr. 3.6). Stačí ponechat přednastavený algoritmus s názvem runica.

Obr. 3.5: Vizuální odstranění dat nástrojem Reject continuous data by eye

Obr. 3.6: Nastavení algoritmu pro spuštění nástroje Run ICA

Po spuštění nástroje Run ICA vznikne takový počet nezávislých signálů, kolik je senzorů. Původ signálů lze vizualizovat pomocí nástroje *Reject components by map:*

• Tools > Reject data using ICA > Reject components by map

Vizualizována je lokace původu jednotlivých nezávislých komponent, přičemž červená barva značí ohnisko původu (obr. 3.7). V obecné rovině platí, pokud je poloha ohniska blízko nosu, jedná se o artefakt vzniklý mrkáním. Takovou komponentu je tedy vhodné odstranit. Nicméně i v tomto případě platí, že rozpoznání typů a původu nezávislých komponent vyžaduje expertní znalost problematiky.

3.5 ODSTRANĚNÍ KOLÍSÁNÍ NULOVÉ IZOLINIE

Následným krokem po analýze nezávislých komponent je odstranění kolísání nulové izolinie neboli driftu. Jedná se o jev, při kterém se dlouhodobě posouvá úroveň nulové hladiny, což má za následek zkreslení. Tento problém lze odstranit pomocí nástroje *Remove baseline:*

• Tools > Remove baseline,

který odečte od signálu jeho průměrnou hodnotu.

3.6 FILTRACE DO VLNOVÝCH PÁSEM

Rozdílná vlnová pásma nesou různou charakteristiku dat. Z toho důvodu byla dalším krokem filtrace dat dle vlnových pásem δ , θ , α , β a γ . Hraniční hodnoty jednotlivých pásem se liší u různých autorů a publikací, např. Moráň (1995)² používá intervaly:

0,5–4 Hz = δ, **5–8 Hz** = θ, **9–13 Hz** = α, **14–30 Hz** = β, **31–50 Hz** = γ.

Obr. 3.8: Nastavení hraničních hodnot intervalu při použití nástroje Basic FIR filter

² MORÁŇ, Miroslav. *Praktická elektroencefalografie*. Brno: Institut pro další vzdělávání pracovníků ve zdravotnictví, 1995. ISBN 80-7013-203-5.

Pro filtraci dat je v toolboxu EEGlab nástroj *Basic FIR filter:*

• Tools > Filter the data > Basic FIR filter.

V něm se zadávají dolní a horní hranice vlnových pásem (obr. 3.8). Filtraci je nutné na datasetu provést pětkrát, pro každé vlnové pásmo zvlášť, čímž vznikne pět nových datasetů.

3.7 EXPORT DAT

Výsledných pět datasetů je potřebné z toolboxu EEGlab vyexportovat opět ve formátu .TXT. Pro export slouží nástroj Data and ICA activity to text file:

• File > Export > Data and ICA activity to text file.

Vzhledem k požadavkům na strukturu souboru, vzhledem k dalšímu kroku práce, bylo nutné při exportu nastavit transponování struktury výsledného souboru, neboť nativně toolbox EEGLAB exportuje data do řádků, nikoliv sloupců. Stejně tak je nutné změnit export časových značek a popisu sloupců ve výsledném souboru (obr. 3.10).

-	Export data - pop_export()		_		×
	Output file name C:\Users\Adam\Desktop Export ICA activities instead of EEG data: Image: Compare the second se	NEEG_data_alfa.txt		rowse]
	Transpose matrix (elec -> rows):				
	Export time values:	Unit (re. sec)	16	E-3	
	Number of significant digits to output: Apply an expression to the output (see 'expr' help):	4			
	Help	Cancel		Ok	

Obr. 3.9: Nastavení exportu .TXT souboru

3.8 SKRIPT

Výstupem z předzpracování dat je pět textových souborů pro každého uživatele a každý stimul. Vzhledem k očekávanému vysokému objemu dat je nutné proces předzpracování automatizovat. Výhodou automatizace je značná úspora času, nevýhodou pak je nemožnost manuální korekce dat u nástrojů Reject continuous data by eye a Reject components by map. Vzhledem k nízké erudici v oblasti elektroencefalografie je od manuálních úkonů upuštěno ve prospěch automatizace. Byl vytvořen skript, který je spustitelný v příkazovém řádku softwaru Matlab.

```
[ALLEEG EEG CURRENTSET ALLCOM] = eeglab;
EEG = pop importdata('dataformat','ascii','nbchan',0,'data','absolutní cesta vstupního souboru','setname','eeq','srate',250,'pnts',0,'xmin',0);
% nahrání .TXT souboru
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 0, 'gui', 'off');
EEG = eeg checkset ( EEG );
EEG = pop runica(EEG, 'extended',1,'interupt','on'); % spuštění analýzy nezávislých komponent
[ALLEEG EEG] = eeg store(ALLEEG, EEG, CURRENTSET);
EEG = eeg checkset ( EEG );
EEG = pop rmbase(EEG, [0 3484]);
                                       % odstranění kolísání nulové izolinie
[ALLEEG EEG] = eeg store(ALLEEG, EEG, CURRENTSET);
EEG = pop eegfiltnew(EEG, 0.5, 4, 1650, 0, [], 1);
                                                          %filtrace
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 1, 'setname', 'delta', 'qui', 'off');
EEG = pop eeqfiltnew(EEG, 5, \overline{8}, 414, 0, [], 1);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 2, 'setname', 'theta', 'gui', 'off');
EEG = pop eegfiltnew(EEG, 9, 13, 368, 0, [], 1);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 3,'setname','alfa','gui','off');
EEG = pop eegfiltnew(EEG, 14, 30, 236, 0, [], 1);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 4,'setname','beta','gui','off');
EEG = pop eegfiltnew(EEG, 31, 50, 108, 0, [], 1);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 5, 'setname', 'gamma', 'gui', 'off');
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 6, 'retrieve', 2, 'study', 0);
EEG = eeg checkset( EEG );
pop export (EEG, 'absolutní cesta pro export souboru', 'transpose', 'on', 'elec', 'off', 'precision', 4); % export souboru'
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 2, 'retrieve', 3, 'study', 0);
EEG = eeg checkset ( EEG );
pop export(EEG, 'absolutní cesta pro export souboru', 'transpose', 'on', 'elec', 'off', 'precision',4);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 3, 'retrieve', 4, 'study', 0);
EEG = eeg checkset ( EEG );
pop export(EEG, 'absolutni cesta pro export souboru', 'transpose', 'on', 'elec', 'off', 'precision',4);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 4, 'retrieve', 5, 'study', 0);
EEG = eeg checkset ( EEG );
pop export (EEG, 'absolutní cesta pro export souboru', 'transpose', 'on', 'elec', 'off', 'precision', 4);
[ALLEEG EEG CURRENTSET] = pop newset(ALLEEG, EEG, 5, 'retrieve', 6, 'study', 0);
EEG = eeg checkset ( EEG );
pop export (EEG, 'absolutní cesta pro export souboru', 'transpose', 'on', 'elec', 'off', 'precision', 4);
eeglab redraw;
```


4 EXTRAKCE CHARAKTERISTICKÝCH RYSŮ

Krokem následujícím po předzpracování dat se stala analýza dat. Hlavním cílem analýzy dat bylo extrahovat charakteristické rysy signálů. Takovým charakteristickým rysem signálu je tzv. výkonové spektrum signálu (power spectral density, zkr. PSD. Postupné kroky v této kapitole směřují k výpočtu PSD. Veškeré výpočty fáze analýzy dat byly výlučně prováděny v softwaru Matlab.

Software použitý v kapitole:

• Matlab

4.1 IMPORT DAT

Data do prostřdí softwaru Matlab je nutné nejdříve nahrát. K tomu slouží nástroj *Import Data*, který se nachází v horní části v pásu karet (obr. 4.1). Po výběru cesty k textovému souboru, který má být nahrán, se otevře nové okno, kde je důležité vybrat formát, v jakém budou data reprezentována v prostředí Matlab. Tímto formátem by měla být matice (obr. 4.2). Po úspěšném nahrání se data zobrazí v okně Workspace.

	Column dolin	nitoro:			Outout	Tune								
Delimited	Tob	niters:	R	ange: A1:0872	- Output	i Type:	🗆 кері	зсе	 unimp 	ortable cells wi	th 🔻 Narv		×	
Elved Midth		•	/ariable Names I	Row: 1	- L	lumeric Matrix	-						Import	
Fixed main	O Delimiter	Options 💌			• (0) Te	xt Options 🔻		_				U V	Selection -	
	DELIMITERS		SEI	LECTION	IN	IPORTED DATA			UNIMPOR	TABLE CELLS			IMPORT	
gabrys_03	3_theta.txt >	<								_				_
Α	B	C	D	E	F	G	н	1	J	K	L	M	N	
							gabrys03t	neta						
Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number	▼Number
0.0000	-1.0477	-0.1008	0.1903	-0.3335	-0.3861	-0.8313	-0.2623	-0.5018	-1.3753	-0.9454	0.2662	0.2892	0.0436	0.2443
4.0000	-1.0402	-0.0182	0.2336	-0.2975	-0.3560	-0.8197	-0.1846	-0.4843	-1.3683	-0.8800	0.2406	0.3316	0.0116	0.3301
8.0000	-1.0141	0.0659	0.2703	-0.2535	-0.3190	-0.7929	-0.1010	-0.4581	-1.3365	-0.7998	0.2081	0.3663	-0.0245	0.4085
12.0000	-0.9695	0.1500	0.2998	-0.2022	-0.2756	-0.7515	-0.0130	-0.4238	-1.2801	-0.7060	0.1691	0.3931	-0.0642	0.4783
16.0000	-0.9074	0.2329	0.3216	-0.1448	-0.2265	-0.6961	0.0779	-0.3818	-1.2003	-0.5998	0.1245	0.4117	-0.1067	0.5387
20.0000	-0.8289	0.3131	0.3358	-0.0824	-0.1726	-0.6277	0.1699	-0.3329	-1.0985	-0.4832	0.0752	0.4222	-0.1508	0.5888
24.0000	-0.7354	0.3893	0.3422	-0.0165	-0.1147	-0.5477	0.2613	-0.2781	-0.9769	-0.3578	0.0224	0.4248	-0.1955	0.6285
28.0000	-0.6290	0.4602	0.3411	0.0515	-0.0539	-0.4577	0.3503	-0.2182	-0.8379	-0.2258	-0.0329	0.4199	-0.2397	0.6574
32.0000	-0.5117	0.5248	0.3331	0.1199	0.0087	-0.3594	0.4351	-0.1544	-0.6844	-0.0894	-0.0893	0.4082	-0.2822	0.6757
36.0000	-0.3858	0.5820	0.3188	0.1873	0.0720	-0.2550	0.5140	-0.0879	-0.5195	0.0492	-0.1454	0.3905	-0.3217	0.6839
40.0000	-0.2540	0.6310	0.2989	0.2519	0.1348	-0.1464	0.5856	-0.0199	-0.3467	0.1878	-0.1999	0.3677	-0.3571	0.6823
44.0000	-0.1188	0.6711	0.2743	0.3124	0.1960	-0.0358	0.6484	0.0483	-0.1693	0.3240	-0.2516	0.3407	-0.3873	0.6718
48.0000	0.0172	0.7017	0.2461	0.3673	0.2545	0.0746	0.7012	0.1156	0.0092	0.4558	-0.2990	0.3105	-0.4112	0.6532
52.0000	0.1515	0.7226	0.2153	0.4153	0.3093	0.1828	0.7430	0.1807	0.1853	0.5811	-0.3412	0.2783	-0.4279	0.6275
56.0000	0.2816	0.7335	0.1828	0.4554	0.3594	0.2868	0.7731	0.2426	0.3558	0.6980	-0.3770	0.2449	-0.4367	0.5958
60.0000	0.4052	0.7345	0.1498	0.4868	0.4041	0.3848	0.7909	0.3003	0.5177	0.8049	-0.4055	0.2114	-0.4371	0.5590
64.0000	0.5204	0.7257	0.1172	0.5087	0.4426	0.4752	0.7962	0.3529	0.6683	0.9003	-0.4261	0.1785	-0.4287	0.5183
68.0000	0.6253	0.7074	0.0858	0.5207	0.4745	0.5566	0.7891	0.3997	0.8053	0.9830	-0.4383	0.1471	-0.4113	0.474
72.0000	0.7185	0.6802	0.0565	0.5229	0.4992	0.6278	0.7697	0.4400	0.9267	1.0521	-0.4417	0.1178	-0.3850	0.4290
76.0000	0.7989	0.6446	0.0299	0.5151	0.5165	0.6880	0.7386	0.4735	1.0310	1.1070	-0.4362	0.0909	-0.3501	0.3822
80.0000	0.8656	0.6014	0.0065	0.4978	0.5264	0.7366	0.6966	0.4999	1.1171	1.1471	-0.4219	0.0669	-0.3070	0.334
84.0000	0.9181	0.5512	-0.0134	0.4715	0.5289	0.7732	0.6444	0.5190	1.1844	1.1725	-0.3992	0.0458	-0.2565	0.287
88.0000	0.9563	0.4950	-0.0295	0.4370	0.5240	0.7977	0.5833	0.5309	1.2327	1.1830	-0.3684	0.0278	-0.1994	0.2414
92.0000	0.9803	0.4337	-0.0417	0.3951	0.5122	0.8104	0.5145	0.5356	1.2621	1.1792	-0.3302	0.0127	-0.1366	0.196
96.0000	0.9905	0.3682	-0.0502	0.3469	0.4937	0.8117	0.4392	0.5335	1.2732	1.1614	-0.2853	0.0003	-0.0694	0.151
100.0000	0.9874	0.2994	-0.0551	0.2935	0.4691	0.8021	0.3588	0.5249	1,2669	1,1304	-0.2348	-0.0098	0.0012	0.1080

Obr. 4.1: Nastavení importu dat

Obr. 4.2: Nástroj Import Data na pásu karet v softwaru Matlab

4.2 FOURIEROVA TRANSFORMACE

Prvním krokem po nahrání dat do prostředí Matlab je rychlá Fourierova transformace (FFT). Fourierova transformace je základním nástrojem pro zpracování signálů. Smyslem Fourierovy transformace je převod signálu z časové domény na frekvenční doménu. Rychlá varianta transformace se nazývá rychlá Fourierova transformace. V softwaru Matlab odpovídá rychlé Fourierově transformaci funkce fft.

Pro provedení rychlé Fourierovy transformace stačí napsat do příkazového okna (Command Window) softwaru Matlab příkaz v podobě:

• Y=fft(název importovaných dat)

Potvrzením příkazu pomocí klávesy enter se na datech vypočítá Fourierova transformace a uloží se do okna Workspace jako proměnná s názvem Y.

4.3 VÝKONNOVÉ SPEKTRUM SIGNÁLU

Po výpočtu rychlé Fourierově transformaci, je možné na datech vypočítat výkonové spektrum signálu. Výkonové spektrum odpovídá na otázku, které frekvence daného signálu obsahují výkon signálu. Jinými slovy, výkonové spektrum je funkce, která nám říká, jaká část výkonu je nesena jakými frekvenčními složkami. Výkonové spektrum se udává ve wattech na hertz. Matematicky je výkonové spektrum vyjádřeno jako druhá mocnina hodnoty frekvence ve frekvenční doméně.

Vzhledem ke skutečnosti, že frekvenční doména byla získána pomocí Fourierovy transformace, výkonnové spektrum bude získáno pokud proměnná Y bude umocněna:

• PS=abs(Y).^2

Potvrzením příkazu pomocí klávesy enter se na proměnné Y vypočítá výkonnové spektrum a uloží se do okna Workspace jako proměnná s názvem PS.

4.4 PRŮMĚRNÁ HODNOTA VÝKONOVÉHO SPEKTRA

Doposud probíhaly výpočty takovým způsobem, že každý EEG signál vystupující z předzpracování, je v prostředí Matlab reprezentován maticí. Vzhledem k závěrečnému kroku celého postupu prací, jímž je klasifikace dat, je nutné každý EEG signál převést na jedno číslo, neboť použitý klasifikátor nemá možnost použít celou matici jako charakteristiku daného signálu. Z toho důvodu musí být z výkonového spektra vypočítána jeho průměrná hodnota. Tato hodnota pak bude reprezentovat hlavní charakteristiku signálu při závěrečné klasifikaci dat.

Pro výpočet průměrné hodnoty slouží v softwaru Matlab funkce mean. Do příkazového okna se vloží příkaz v podobě:

• M=mean(PS)

Potvrzením příkazu pomocí klávesy enter se na proměnné PS vypočítá průměrná hodnota výkonnového spektra a uloží se do okna Workspace jako proměnná s názvem M.

4.5 <u>EXPORT DAT</u>

Výsledná data s hodnotami průměrného výkonového spektra pro každý senzor je nutné vyexportovat. Pro export se vzhledem k potřebám další práce jako nejvhodnější jeví soubor .MAT. Pro export dat je vhodné použít funkci save. Příkaz pro uložení souboru má podobu:

• save relativní cesta pro export souboru.mat M

4.6 <u>SKRIPT</u>

Výše sepsané kroky je nutné opakovat pro každého účastníka a každý stimul experimentu. Vzhledem k velmi vysokému počtu vstupních souborů (pro každý stimul a účastníka pět souborů s EEG daty rozdělených do vlnových pásem δ, θ, α, β, γ) a nutnosti opakovat proces pro každý soubor zvlášť, je vhodné proces extrakce charakteristických rysů opět převést do podoby skriptu za účelem automatizace procesu.

```
x=load('relativní cesta importovaného souboru')
y=fft(x)
PS=abs(y).^2
M=mean(PS)
save relativní cesta exportovaného souboru.mat M
clear
```


5 KLASIFIKACE DAT

Závěrečným krokem celého zpracování dat je klasifikace dat. Smyslem klasifikace je roztřídění charakteristických rysů EEG dat do klasifikačních tříd. Klasifikace probíhá v aplikaci Classification Learner, což je aplikace implementovaná v softwaru Matlab.

5.1 PŘÍPRAVA DAT

Před samotnou klasifikací a trénováním je nutné si data připravit do odpovídající podoby. Vzhledem k potřebám

aplikace Classification Learner je potřeba mít veškerá data, která jsou určená k trénování, v jedné matici. Data pocházející od jednoho účastníka a jednoho stimulu, rozdělená do pěti souborů δ, θ, α, β a γ, je nyní nutné spojit horizontálně spojit. K tomu slouží funkce horzcat. Po spojení vznikne matice o jednom řádku a 70 sloupcích, neboť sloupce představují 14 EEG senzorů v každém vlnovém pásmu (14 × 5 = 70). Po provedení horizontálního spojení u každého stimulu, je nutné tyto stimuly spojit do matice navzájem a to vertikálně. K tomu slouží funkce vertcat. Po propojení veškerých stimulů, které vstupují do trénování dat je nutné k matici připojit ještě jeden sloupec, ve kterém jsou numerickými hodnotami vyjádřeny klasifikační třídy. Výsledná matice tedy obsahuje tolik řádků, kolik je stimulů vstupujících do trénování dat a 71 sloupců.

5.2 TRÉNOVÁNÍ DAT

Pro trénování a klasifikaci dat slouží aplikace Classification Learner. Tu je možné nalézt na pásu karet v záložce Apps (obr. 5.1).

Obr. 5.1: Umístění aplikace Classification Learner na pásu karet

Následným krokem po otevření aplikace je zvolení nové relace (New Session). Otevře se okno rozdělené do tří částí (obr. 5.2). V první části se vybírá připravená matice. V druhé části ve sloupci Import As se nastavují funkce jednotlivých sloupců při trénování dat. Možnost Do Not Import znamená, že data z daného sloupce nebudou do trénování zahrnuta. Možnost Predictor představuje skutečnost, že daný sloupec bude figurovat v procesu trénování jako atribut a možnost Response znamená, že daný sloupec představuje klasifikační třídy, do kterých bude výsledný klasifikační model klasifikovat další data. Možnost Response se musí nastavit právě jednou a to pouze pro sloupec obsahující celá

Softwa	nre použitý v	kapitole:		
•	Aplikace Matlab	Classification	Learner	v prostředi
•	Matlab			

čísla. V třetí části okna se nastavuje křížová validace, která slouží jako ochrana pro přetrénování dat. Je možné ji nastavit v rozmezí od dvojnásobné po padesátinásobnou. Po kliknutí na tlačítko Start Session se otevře nové okno, s možnostmi nastavení typu klasifikátoru a samotné spuštění trénování dat (obr. 5.3). Je zde také možnost spustit ještě analýzu hlavních komponent (PCA) a snížit tak dimenzionalitu dat. Z nabízených klasifikátorů jsou zde na výběr rozhodovací stromy, diskriminační analýzy, Support vector machines, metoda K-nejbližšího souseda a vícemodelové klasifikátory.

Step 1 ielect a table or matrix.		Step 2 Select predictors an	d response.				Step 3 Define validation method.	
complet_SAM		Name	Туре	Range	Import as		Cross-Validation	
		column 49	double	0.318195 0.536	Predictor	×	Protects against overfitting by partitioning the dat	
		column_50	double	0.319987 0.535	Predictor	~	set into folds and estimating accuracy on each fo	
		column_51	double	0.317426 0.539	Predictor			
		column_52	double	0.318121 0.749	Predictor	~		
		column_53	double	0.319147 0.533	Predictor	~	Cross-validation folds: 10 folds	
		column_54	double	0.318704 0.536	Predictor	~		
		column_55	double	0.319574 0.536	Predictor	~		
		column_56	double	0.320431 0.536	Predictor	~		
		column_57	double	0.694782 1.07726	Predictor	~		
		column_58	double	0.699872 1.08276	Predictor	~	Holdout Validation	
		column_59	double	0.696963 1.09099	Predictor	~	Recommended for large data sets.	
		column_60	double	0.695257 1.15014	Predictor	~		
		column_61	double	0.700261 1.16213	Predictor	~	Percent held out: 25%	
		column_62	double	0.694884 1.10349	Predictor	~		
		column_63	double	0.697816 1.09187	Predictor	~	4	
		column_64	double	0.698226 1.10288	Predictor	~		
	~	column_65	double	0.695464 1.17253	Predictor	~		
Use columns as variables		column_66	double	0.696898 1.5708	Predictor	~	No Validation	
		column_67	double	0.694301 1.09036	Predictor	~	No protection against overfitting.	
) Use rows as variables		column_68	double	0.697263 1.09194	Predictor	~		
ow to prepare data		column_69	double	0.695912 1.0945	Predictor	~	Read about validation	
		column_70	double	0.696509 1.09837	Predictor	~		
		column_71	double	16	Response	~ ×		

Obr. 5.2: Nastavení procesu trénování

CLASSIFICATION LEARNER			VIEV	VEW											
New Session -	Feature Selection	PCA	لی All Quick- To-Train	All	All Linear	Complex Tree	•	Q Advanced	Use Parallel	D Train	Scatter Plot	Confusion Matrix	ROC Curve	Parallel Coordinates Plot	Export Model -
FILE FEATURES				MODEL TYPE				TRAIN	ING	¢.		PLOTS		EXPORT	

Obr. 5.3: Výběr klasifikátoru a spuštění procesu trénování

5.3 EXPORT KLASIFIKAČNÍHO MODELU

Po dokončení procesu trénování se v okně History zobrazí všechny natrénované klasifikátory společně s jejich přesností klasifikace (obr. 5.4). Vybraný natrénovaný klasifikátor pak lze vyexportovat do podoby klasifikačního modelu, který lze poté uplatnit na další data (obr. 5.5). Po vyexportování modelu může být aplikace Classification Learner zavřena.

1.11 🟠	SVM	Accuracy: 18,3%
Last change:	Coarse Gaussian SVM	70/70 features
1.12 🟠	KNN	Accuracy: 16.6%
Last change:	Fine KNN	70/70 features
1.13 🟠	KNN	Accuracy: 17.1%
Last change:	Medium KNN	70/70 features
1.14 🟠	KNN	Accuracy: 16.8%
Last change:	Coarse KNN	70/70 features
1.15 🟠	KNN	Accuracy: 15.3%
Last change:	Cosine KNN	70/70 features
1.16 🟠	KNN	Accuracy: 15.5%
Last change:	Cubic KNN	70/70 features
1.17 🟠	KNN	Accuracy: 15.7%
Last change:	Weighted KNN	70/70 features
1.18 🟠	Ensemble	Accuracy: 19.5%
Last change:	Boosted Trees	70/70 features
1.19 🟠	Ensemble	Accuracy: 17.6%
Last change:	Bagged Trees	70/70 features
1.20 🟠	Ensemble	Accuracy: 19.4%
Last change:	Subspace Discriminant	70/70 features
1.21 🟠	Ensemble	Accuracy: 17.7%
Last change:	Subspace KNN	70/70 features
Ob	r. 5.4: Seznam natrénov klasifikátorů	vaných

CLASS	FICATION L	EARNER	VIE	N											
New Session V	Feature Selection	PCA	Linear SVM	Quadratic SVM	Cubic SVM	Fine Gaussian	•	O Advanced	Use Parallel	Train	Scatter Plot	Confusion Matrix	ROC Curve	Parallel Coordinates Plot	Export Model V
FILE	E FEATURES				MODEL TYPE	E			TRAIN	IING			PLOTS		EXPORT

Obr. 5.5: Export vybraného natrénovaného klasifikátoru

5.4 POUŽITÍ KLASIFIKAČNÍHO MODELU

Vyexportovaný model lze použít v prostředí softwaru Matlab pro klasifikaci dalších dat. Nová data, která mají být klasifikovaná, musí mít stejnou strukturu jako data, na kterých model vzniknul, vyjma posledního sloupce s klasifikačními třídami. Pro použití klasifikačního modelu na nových datech slouží v softwaru Matlab funkce predictFcn. Použitý příkaz pak vypadá takto:

• Yfit = C.predictFcn(X)

kde C je název klasifikačního modelu a X je název matice, na které probíhá klasifikace.

ZÁVĚR

Výsledkem zpracování EEG signálu je klasifikační model, který může dosahovat i nízkých hodnot v přesnosti. Důvodů, proč se dospěje k tak málo příznivému výsledku, může být několik. Prvním z nich může být chyba měření. To se může stát kvůli chybnému usazení headsetu na hlavu. Ten není vůči nepřesnému usazení na hlavu nijak uzpůsoben. Ano, celý headset má pevně danou pozici senzorů vůči sobě navzájem, nicméně při nesprávné manipulaci s ním, může být umístěn na hlavu pod různými úhly. K úspěšnému přenosu signálu i přes chybné umístění dojde. Stačí, aby byly senzory headsetu řádně hydratovány. Další problém, který může ovlivnit měření dat, je postupné vysychání senzorů, s čímž bylo spojeno postupné snižování kvality přenosu signálu. Jiného výsledku může být dosaženo při různém nastavení trénování dat a použití odlišného klasifikátoru. Potenciálních kombinací řešících, jak objemný použít soubor trénovacích dat, kolikanásobnou křížovou validaci nastavit a jaký nejvhodnější klasifikátor použít, je velké množství. Počet klasifikačních tříd vstupujících do klasifiakce také ovlivní výslednou přesnost klasifikačního modelu. Čím více bude klasifikačních tříd, tím bude přesnost klasifikačního modelu klesat.

