1.1 Postup stanovení krajinného potenciálu v GIS

Navržený postup byl řešen v programu ArcGIS Desktop 9.2. Celé řešení, s potřebnými daty a vzorci pro výpočet hodnot a výběr dat, je uloženo v projektu skp.mxd, který je součástí příloh na CD. Postup je navržen tak, aby jej bylo možné algoritmizovat pomocí modelového zpracování v prostředí ModelBuilderu a poté převést na skript v jazyce Python.

Postup stanovení krajinného potenciálu v GIS

Základním předpokladem k provedení popsaného postupu jsou vstupní data (vektorové vrstvy) nesoucí informaci o geologické stavbě, vlhkostních poměrech a trofii půd, sklonitosti terénu a klimatu. Zároveň tyto vrstvy obsahují ohodnocení přírodních vlastností pro zvolené aktivity. Pro zjištění územních rezerv a konfliktních ploch je potřeba vrstva nesoucí informaci o současném využití území. Důležitou vstupní vrstvou je také rastrová vrstva sklonu (pixel 25x25), která určuje velikost a rozložení pixelů nově vytvářených rastrů. Celý výpočet krajinného potenciálu probíhá v rastru. Pro konečnou vizualizaci je vytvořena také vrstva "ukázkových" rozvojových limitů území (limity.shp), která zajišťuje "nedotknutelnost" takto vymezených ploch. Jedná se především o plochy ochrany přírody – maloplošná zvláště chráněná území, I. zóny CHKO Bílé Karpaty, ÚSES, zastavěné území obcí a účelová zástavba. Přehled vstupních dat i s popisem atributů uvádí Tabulka 1.

Název vrstvy	Popis vrstvy (typ geometrie)		počet entit
Název atributu	Popis atributu	Defi	nice atributu
geol.shp	Geologie (polygon)		368
FID	Identifikační číslo	obje	kt ID, 4
GEOL	Znakový kód	text,	1
KOD_G	Číselný klíč pro propojení s rastrem	číslo	, 1
GA	Ohodnocení přírodních vlastností pro lyžování	číslo	, 1
GB	Ohodnocení přírodních vlastností pro sportovní areál	číslo	, 1
GC	Ohodnocení přírodních vlastností pro golf	číslo	, 1
GD	Ohodnocení přírodních vlastností pro ornou půdu	číslo	, 1
GE	Ohodnocení přírodních vlastností pro louky, pastviny	číslo	, 1
GF	Ohodnocení přírodních vlastností pro sad	číslo	, 1
GG	Ohodnocení přírodních vlastností pro les	číslo	, 1
klima.shp	Klimatické oblasti dle E. Quitta (polygon)		4
FID	Identifikační číslo	obje	kt ID, 4
Klima	Označení klimatické oblasti	text,	3
KOD_K	Číselný klíč pro propojení s rastrem	číslo	, 1
KA	Ohodnocení přírodních vlastností pro lyžování	číslo	, 1
KB	Ohodnocení přírodních vlastností pro sportovní areál	číslo	, 1
KC	Ohodnocení přírodních vlastností pro golf	číslo	, 1
KD	Ohodnocení přírodních vlastností pro ornou půdu	číslo	, 1
KE	Ohodnocení přírodních vlastností pro louky, pastviny	číslo	, 1
KF	Ohodnocení přírodních vlastností pro sad	číslo	, 1
KG	Ohodnocení přírodních vlastností pro les	číslo	, 1

Tabulka 1	Přehled	vstupních	dat
-----------	---------	-----------	-----

hydro.shp	Hydrická řada (polygon)	167
FID	Identifikační číslo	objekt ID, 4
Н	Číselný označení hydrické řady	text, 1
KOD_H	Číselný klíč pro propojení s rastrem	číslo, 1
HA	Ohodnocení přírodních vlastností pro lyžování	číslo, 1
HB	Ohodnocení přírodních vlastností pro sportovní areál	číslo, 1
HC	Ohodnocení přírodních vlastností pro golf	číslo, 1
HD	Ohodnocení přírodních vlastností pro ornou půdu	číslo, 1
HE	Ohodnocení přírodních vlastností pro louky, pastviny	číslo, 1
HF	Ohodnocení přírodních vlastností pro sad	číslo, 1
HG	Ohodnocení přírodních vlastností pro les	číslo, 1
trofie.shp	Trofická řada (polygon)	702
FID	Identifikační číslo	objekt ID, 4
TROF	Znakové označení trofické řady	text, 2
KOD_T	Číselný klíč pro propojení s rastrem	číslo, 1
TA	Ohodnocení přírodních vlastností pro lyžování	číslo, 1
TB	Ohodnocení přírodních vlastností pro sportovní areál	číslo, 1
TC	Ohodnocení přírodních vlastností pro golf	číslo, 1
TD	Ohodnocení přírodních vlastností pro ornou půdu	číslo, 1
TE	Ohodnocení přírodních vlastností pro louky, pastviny	číslo, 1
TF	Ohodnocení přírodních vlastností pro sad	číslo, 1
TG	Ohodnocení přírodních vlastností pro les	číslo, 1
sklon.shp	Sklon ve stupních (polygon)	2467
FID	Identifikační číslo	objekt ID, 4
SKLON	Znakový kód pro vymezené intervaly sklonu	text, 1
KOD_S	Číselný klíč pro propojení s rastrem	číslo, 1
SA	Ohodnocení přírodních vlastností pro lyžování	číslo, 1
SB	Ohodnocení přírodních vlastností pro sportovní areál	číslo, 1
SC	Ohodnocení přírodních vlastností pro golf	číslo, 1
SD	Ohodnocení přírodních vlastností pro ornou půdu	číslo, 1
SE	Ohodnocení přírodních vlastností pro louky, pastviny	číslo, 1
SF	Ohodnocení přírodních vlastností pro sad	číslo, 1
SG	Ohodnocení přírodních vlastností pro les	číslo, 1
landuse.shp	Současné využití území (polygon)	450
FID	Identifikační číslo	objekt ID, 4
LAND	Znakový kód pro využití území	text, 1
KOD_L	Číselný klíč pro propojení s rastrem	číslo, 1
limity.shp	Ukázkové rozvojové limity území (polygon)	168
FID	Identifikační číslo	objekt ID, 4
LIMIT	Limity území	text, 30
KOD_LIM	Znakový kód pro limit území	číslo, 2
sklon_r (GRID)	Rastrová vrstva sklonu ve stupních (pixel 25x25)	86895 pixlů
Rowid	Identifikační číslo	
Value	Označení intervalu sklonu (°)	číslo, 4, 0
Count	Počet pixlů v daném intervalu	číslo, 4, 0

Dále byly připraveny čtyři pomocné tabulky. Dvě z nich jsou "prázdné" tabulky *atributy.dbf* a *atributy_opt.dbf* pouze s nadefinovanými novými atributy, které se budou zjišťovat (počítat). Přehled a definice nových atributů je uveden v tabulce (Tabulka 2 a Tabulka 3).

Tabulka 2 Přehled a	popis nově	é definovaných	atributů v tabulce	atributy.dbf
		1		~ .

Název atributu	Popis atributu	Definice atributu
OID	Identifikační číslo	objekt ID, 4
GBC	Pole pro jedinečný geosystém	text, 6
KP_A	Pole pro výpočet krajinného potenciálu (KP) pro lyžování (A)	číslo, 3
KP_B	Pole pro výpočet krajinného potenciálu (KP) pro sportovní areál (B)	číslo, 3
KP_C	Pole pro výpočet krajinného potenciálu (KP) pro golf (C)	číslo, 3
KP_D	Pole pro výpočet krajinného potenciálu (KP) pro ornou půdu (D)	číslo, 3
KP_E	Pole pro výpočet krajinného potenciálu (KP) pro louky, pastviny (E)	číslo, 3
KP_F	Pole pro výpočet krajinného potenciálu (KP) pro sad (F)	číslo, 3
KP_G	Pole pro výpočet krajinného potenciálu (KP) pro les (G)	číslo, 3
VHOD_A	Pole pro označení vhodnosti využití pro lyžování	text, 5
VHOD_B	Pole pro označení vhodnosti využití pro sportovní areál	text, 5
VHOD_C	Pole pro označení vhodnosti využití pro golf	text, 5
VHOD_D	Pole pro označení vhodnosti využití pro ornou půdu	text, 5
VHOD_E	Pole pro označení vhodnosti využití pro louky, pastviny	text, 5
VHOD_F	Pole pro označení vhodnosti využití pro sad	text, 5
VHOD_G	Pole pro označení vhodnosti využití pro les	text, 5
OPTIMAL	Pole pro optimální aktivitu	text, 7

 Tabulka 3 Přehled a popis nově definovaných atributů v tabulce atributy_opt.dbf

Název atributu	Popis atributu	atributu
OID	Identifikační číslo	objekt ID, 4
KOMB_A	Pole pro kombinaci lyžování a současného využití	text, 2
KOMB_B	Pole pro kombinaci sportovní areál a současné využití	text, 2
KOMB_C	Pole pro kombinaci golf a současné využití	text, 2
KOMB_D	Pole pro kombinaci orná půda a současné využití	text, 2
KOMB_E	Pole pro kombinaci louky a pastviny a současné využití	text, 2
KOMB_F	Pole pro kombinaci sad a současné využití	text, 2
KOMB_G	Pole pro kombinaci les a současné využití	text, 2
KOMB_O	Pole pro kombinaci optimálního využití a současného využití	text, 2
ZMENA _A	Pole definující možnost změny využití pro lyžování	text, 1
ZMENA _B	Pole definující možnost změny využití pro sportovní areál	text, 1
ZMENA_C	Pole definující možnost změny využití pro golf	text, 1
ZMENA _D	Pole definující možnost změny využití pro ornou půdu	text, 1
ZMENA _E	Pole definující možnost změny využití pro louky a pastviny	text, 1
ZMENA _F	Pole definující možnost změny využití pro sad	text, 1
ZMENA _G	Pole definující možnost změny využití pro les	text, 1
ZMENA_O	Pole definující možnost změny využití pro aktivity optimálního využití	text, 1
REZERVA_A	Pole pro zjištěné územní rezervy pro lyžování	text, 1
REZERVA_B	Pole pro zjištěné územní rezervy pro sportovní areál	text, 1
REZERVA_C	Pole pro zjištěné územní rezervy pro golf	text, 1
REZERVA_D	Pole pro zjištěné územní rezervy pro ornou půdu	text, 1
REZERVA_E	Pole pro zjištěné územní rezervy pro louky a pastviny	text, 1
REZERVA_F	Pole pro zjištěné územní rezervy pro sad	text, 1
REZERVA_G	Pole pro zjištěné územní rezervy pro les	text, 1
REZERVA_O	Pole pro zjištěné územní rezervy pro aktivity optimálního využití	text, 1
KONFLIKT_A	Pole pro zjištěné konfliktní plochy lyžování	text, 1
KONFLIKT _B	Pole pro zjištěné konfliktní plochy pro sportovní areál	text, 1
KONFLIKT _C	Pole pro zjištěné konfliktní plochy pro golf	text, 1
KONFLIKT_D	Pole pro zjištěné konfliktní plochy pro ornou půdu	text, 1
KONFLIKT _E	Pole pro zjištěné konfliktní plochy pro louky a pastviny	text, 1
KONFLIKT_F	Pole pro zjištěné konfliktní plochy pro sad	text, 1
KONFLIKT_G	Pole pro zjištěné konfliktní plochy pro les	text, 1
NAVRH_ZMEN	Pole pro navržené změny aktivit optimálního využití	text, 1

Třetí tabulka *vhodnost.dbf* (Obrázek 1) slouží pro přiřazení lokalit do skupin vhodnosti využití konkrétní aktivitou. Je v ní nadefinován atribut KP (číslo, 3), který představuje všechny možné hodnoty krajinného potenciálu v rozmezí 0 – 243 a atribut VHODNOST (text, 5), který ke konkrétní hodnotě KP přiřazuje označení kategorie vhodnosti (1-VVP, 2-NAP, ..., 5-NEP).

 a Thategorizade (Jsteaka Majimeno potenetara									
Součin (KP)	0 - 15	16 – 30	31 - 60	61 - 120	121 - 243				
Míra vhodnosti plochy	Nevhodná plocha	Málo vhodná plocha	Vhodná plocha	Nadprůměrně vhodná plocha	Velmi vhodná plocha				
Označení	5-NEP	4-MVP	3-VHP	2-NAP	1-VVP				

Tabulka 4 Kategorizace výsledků krajinného potenciálu

OID	vhodnost	KD.
15	5-NEP	0
19	5-NEP	2
0	5-NEP	4
1	5-NEP	6
2	5-NEP	8
3	5-NEP	9
4	5-NEP	12
17	4-MVP	16
5	4-MVP	18
6	4-MVP	24
7	4-MVP	27
18	3-VHP	32
8	3-VHP	36
16	3-VHP	48
9	3-VHP	54
10	2-NAP	72
11	2-NAP	81
12	2-NAP	108
13	1-VVP	162
14	1-VVP	243

Obrázek 1 Ukázka tabulky vhodnost.dbf

Čtvrtá tabulka *zmena.dbf* slouží pro konečné navržení změn ve využití území. Obsahuje atribut KOMB (text, 2) a ZMENA (text, 1). Atribut KOMB představuje všechny možné kombinace sledovaných aktivit a ploch současného využití. Atribut ZMENA dané kombinaci připisuje, jestli je možné změnit současné využití na navrženou aktivitu či nikoliv (1 = ano, 0 = ne, X = shodné využití). K tomu bylo navrženo základní binární rozhodovací schéma (Tabulka 5).

Tabulka 5 Rozhodovací schéma pro změny ve využití ploch. Kódy pro současné využití ploch: L – les; P – louka, pastvina; O – orná půda; I – intravilán (zastavěné území); U – účelová zástavba; S – ovocný sad, zahrada; K – křoviny; V – vodní plocha; Z – lyžování

-	ovočný sud, žanidad, iš kroviný, v vodní pročna, ž tyžovaní									
	současné využití	teor	etick	á mož	nost :	změny	y souč	éasnél	10 vyı	ıžití
		plochy pro danou aktivitu								
sle	dovaná	(1 = ano, 0 = ne, X = shodné využití)								
(na	ovržená) aktivita	L	Р	0	Ι	U	S	K	V	Ζ
Α	Lyžování	0	1	1	0	0	1	1	0	Х
B	Sportovní areál	0	1	1	0	0	1	1	0	1
С	Golf	0	1	1	0	0	1	1	0	0
D	Orná půda	0	1	Х	0	0	1	1	0	0
Ε	Louky, pastviny	0	Х	1	0	0	1	1	0	1
F	Sad	0	1	1	0	0	Х	1	0	1
G	Les	Х	0	0	0	0	0	1	0	1
	pro optimální využití									
Χ	nevyhovuje žádná z výše	0	0	0	0	0	0	0	0	0
	uvedených aktivit									

Vlastní postup:

 Převedení jednotlivých vektorových vrstev ohodnocených přírodních podmínek na grid pomocí funkce FEATURE TO RASTER. Hodnota pro výsledný rastr je KOD_T, KOD_S, KOD_H,... Název výsledného gridu trofie_r, hydro_r, ... Cell size je definováno podle rastru sklonu.(Obrázek 2)

Obrázek 2 Vzorově vyplněné zadání pro nástroj Feature to Raster

TIP: Jelikož jsou převáděny 4 vektorové vrstvy, můžeme využít nástroj pro hromadnou aplikaci funkce na více souborů, tzv. batch (dávkové zpracování). Tuto funkci je možné zvolit klikem pravého tlačítka myši na požadovaný nástroj a z rolovacího menu vybrat příkaz "Batch..." (Obrázek 3).

Obrázek 3 Výběr příkazu Batch...

_	Input features	Field	Output raster	Output cell size
1	klima	KOD_K	C:\skp\vysledky\klima_r	C:\skp\data\sklon_r
2	trofie	KOD_T	C:\skp\vysledky\trofie_r	C:\skp\data\sklon_r
3	hydro	KOD_H	C:\skp\vysledky\hydro_r	C:\skp\data\sklon_r
4	geol	KOD_G	C:\skp\vysledky\geol_r	C:\skp\data\sklon_r

Obrázek 4 Vyplněná zadávací tabulka pro dávkové zpracování funkce Feature to raster

2. Sloučení výsledných rastrů pomocí funkce COMBINE (Obrázek 5). Výsledkem je rastr combine_1, který vytváří možné kombinace přírodních podmínek (přírodní geosystémy) a zachovává hodnoty vstupních rastrů, tzn. nese hodnoty atributu "*číselný klíč pro propojení s rastrem*" v tomto případě však označené názvem rastrové vrstvy - TROFIE_R, SKLON_R, KLIMA_R, HYDRO_R a GEOL_R (Obrázek 6).

Input rasters	~	 	
l s			<u> </u>
		 	+
∠ klima_r			<u></u>
∠ hydro_r			×
∠ geol_r			
			+
			1
-			
-			1
Output raster			The second
Culckoluucladkul	combine 1		(2

Obrázek 5 Ukázka zadání příkazu Combine

≡ <i>I</i>	Attribute	es of com	bine_1					l	. 🗆 🔀
	Rowid	VALUE *	COUNT	SKLON R	TROFIE R	KLIMA R	HYDRO R	GEOL R	~
	0	1	1161	2	3	1	2	4	
1	1	2	488	1	3	1	2	4	
	2	3	2983	3	3	1	2	4	
	3	4	210	1	2	1	2	4	
	4	5	761	1	3	1	2	2	
	5	6	1140	3	3	1	2	3	
	6	7	203	4	3	1	2	2	
	7	8	949	3	3	1	2	2	
	8	9	1022	2	3	1	2	2	
	9	10	567	4	3	1	2	3	
	10	11	765	2	3	1	2	3	
	11	12	1095	2	5	1	2	2	
	12	13	1209	4	3	1	2	4	
	13	14	1744	3	5	1	2	2	
	14	15	2133	2	2	1	2	4	
	15	16	6020	3	5	1	2	4	-
	16	17	4719	3	2	1	2	4	×
	Record	1: 14 4	0	► FI 5	ihow: All S	Selected	Records (0	out of 305	•

Obrázek 6 Ukázka atributové tabulky vytvořeného rastru combine_1

3. Připojení připravené tabulky *atributy.dbf* (Obrázek 7) a tabulek jednotlivých ohodnocených vrstev s přírodními podmínkami (*sklon.dbf, hydro.dbf, trofie.dbf, geol.dbf, klima.dbf*) k atributové tabulce rastru combine_1 pomocí funkce JOIN (Obrázek 8, Obrázek 9).

🏲 Add	Join 📃 🗖
	Layer Name or Table View
	combine_1 🗾 🗃
	Input Join Field
	Rowid
	Join Table
	atributy 🗾 🗃 🔊
	Output Join Field
	OID
	I Keep All
. 11	
	OK Cancel Environments Show Help >>

Obrázek 7 Vyplněné zadání pro příkaz JOIN (propojení combine_1 a atributy.dbf)

			C			∧ Pří	ipojov	aná tab	ulka									
upni tabu Attribut	ilka os of comb	vino 1			-		Attril	butes of	sklon									٦
atti ibut	es of confi	nme_i					FID	Shape	KOD S	SKL	ON SA	SB	SC	SD	SE	SF	SG	
Rowid	VALUE *	COUNT	SKLON R	TROFIE R	KI		0	Polygon	1	R	0	3	2	3	2	2	2	
0	1	1161	2	3			1	Polygon	2	M	0	2	3	2	2	3	2	
1	2	488	1	3			2	Polygon	1	R	0	3	2	3	2	2	2	
2	3	2983	3	3			3	Polygon	3	S	2	1	0	0	3	1	3	
3	4	210	1	2			4	Polygon	4	P	3	0	0	0	1	2	3	
4	5	761	1	3			5	Polygon	4	Р	3	0	0	0	1	2	3	
5	6	1140	3	3			6	Polygon	3	S	2	1	0	0	3	1	3	
6	7	203	4	3			7	Polygon	2	M	0	2	3	2	2	3	2	
7	8	949	3	3			0	Polygon	9	S	2	1	0	0	Э	1	Э	
8	9	1022	2	3			9	Polygon	3	S	2	1	0	0	3	1	3	
9	10	567	4	3			De	cords and		0	. I.I	ch			olocto	41	Boss	
10	11	765	2	3			Re	cord, 14		0		DH	2441 1		electe		Reco	^a u

Obrázek 8 Schéma propojení tabulky sklon.dbf a combine_1

[≈] Ado	d Join	
	Layer Name or Table View	
	combine_1	- 🗃
	Input Join Field	
	SKLON_R	•
	Join Table	
	sklon] 🗃 🖌
	Output Join Field	
	KOD_S	-
	🔽 Keep All	F
	OK Cancel Environments	Show Help >>

Obrázek 9 Vyplněné zadání pro příkaz JOIN (propojení combine_1 a sklon.dbf)

4. Funkce COMPOSITE BANDS (Obrázek 10) uloží atributy všech připojených tabulek ke combine_1 do jednoho rastru (bez indexů), nad kterým následně budou probíhat výpočty. Výsledný rastr je pojmenován "*vypocet*".

🎤 Com	posite Bands	
	Input Rasters	<u>a</u>
	combine_1	+ ×
		±
	Output Raster	
	C:\skp\vysledky\vypocet.img	E
<		
	OK Cancel Environments Si	how Help >>

Obrázek 10 Vyplněné zadání pro nástroj Composite Bands

 Vytvoření kódu pro označení jedinečných geosystémů (atribut GBC) pomocí nástroje FIELD CALCULATOR. Složení kódu: sklon (písmeno – R, M, P) – klima (číslo- 1, 2, 3)
 – geologie (písmeno – A, R, D, F) – hydrická řada (číslo – 2, 3, 4, 5) – trofie půdy (písmeno – A, AB, B, BC, BD, C, CD).

Field Calculator		? 🛛
Fields: Rowid VALUE COUNT	Type:	Functions:
SKLON_R TROFIE_R KLIMA_R HYDRO_R GEOL_R OD	C Date	Exp() Fix() Int() Log() Sin() Sar() ❤️
GBC KP_A KP_B		× / & + · =
[SKLON] & [KOD_K] & [GEOL] & [H] & [TROF]		Load
		Help
Calculate selected records only		ОК
Data loaded.		Lancel

Zápis v kalkulátoru: [SKLON] & [KOD_K] & [GEOL] & [H] & [TROF]

Obrázek 11 Zápis v kalkulátoru pro vytvoření kódu jednotlivých geobiocénů

 Vlastní výpočet potenciálu pro dané aktivity (A, B, C, ..., G) pomocí nástroje FIELD CALCULATOR. Jedná se o aplikaci matematické funkce "součin" na ohodnocené přírodní podmínky pro konkrétní aktivitu. Výsledkem jsou hodnoty krajinného potenciálu (KP_A, KP_B, ..., KP_G) v rozmezí 0 – 243.

Zápis v kalkulátoru pro aktivitu A: [TA] * [KA] * [HA] * [GA] * [SA]

Zápis vzorců pro ostatní aktivity je uložen v řešení projektu na CD ve složce .../SKP/vypocty/ pod názvem zjišťovaného atributu.

Field Calculator		? 🛛
Fields: Rowid VALUE COUNT SKLON_R TROFIE_R KLIMA_R HYDRO_R GEOL_R OID_ GBC KP A	Type: ▲ Number ← String ← Date	Functions: Abs () Atn () Cos () Exp () Fix () Int () Log () Sin () Sgr ()
KP_B KP_A = [TA] * [KA] * [HA] * [GA] * [SA]	Advanced	+ - = Load Save Help
Calculate selected records only Data loaded.		OK Cancel

Obrázek 12 Zápis v kalkulátoru pro zjištění krajinného potenciálu pro aktivitu lyžování (A)

7. Pro přehlednost jsou výsledky krajinného potenciálu klasifikovány do pěti skupin. Pomocí připravené tabulky vhodnost.dbf je každé lokalitě přiřazen kód vhodnosti využití dané lokality podle vypočítané hodnoty KP pro jednotlivé aktivity – pomocí funkce JOIN se tabulka vhodnost.dbf připojí přes pole KP_A (tabulka rastru vypocet) a KP (tabulka vhodnost.dbf) k tabulce rastru vypocet (Obrázek 13). Následně přes nástroj FIELD CALCULATOR (Obrázek 14) se připojené hodnoty VHODNOST zapíší do nachystaného sloupce VHOD_A a tabulku vhodnost.dbf se odpojí – tento krok se opakuje pro všechny ostatní aktivity.

Obrázek 13 Schéma propojení tabulky vypocet a vhodnost.dbf

Obrázek 14 Zapsaní připojených kódů míry vhodnosti (vhodnost. VHODNOST) do pole VHOD_A

8. Výběr nejoptimálnější aktivity pro jednotlivé lokality (GBC) – po zapnutí editace (Editor – Start editing...) provedeme v tabulce *vypocet* ruční výběr "nejoptimálnějších" aktivit pro každou lokalitu a kód této aktivity (A, B, C, ..., G) zapíšeme do již připraveného sloupce OPTIMAL. Vyskytuje-li se v některé lokalitě více "nejoptimálnějších" aktivit, do pole OPTIMAL, jsou zapsány ty, které zvýší ekologickou stabilitu území. Pořadí funkcí podle míry zvýšení ekologické stability (od nejvyšší po nejnižší) je následující: Les – Louky, pastviny – Ovocný sad – Orná půda – Lyžování – Sportovní areál – Golf. Další podmínkou je, že do pole OPTIMAL zapisujeme pouze "nejoptimálnější" aktivity, které mají hodnotu KP vyšší nebo rovno 55, tzn., že jejich využití na dané lokalitě je nadprůměrně vhodné až velmi vhodné. Jestliže hodnota KP je nižší než 55 do pole OPTIMAL zapíšeme "X" – lokalita není vhodná k žádné z výše sledovaných aktivit.

Závěr metodického postupu se zabývá návrhem změn pro optimální využití krajiny za respektování přírodního potenciálu. K tomu je potřeba provést porovnání se současným využitím krajiny a velmi důležitým prvkem je zde rozhodovací schéma (Tabulka 5). Toto schéma je však založeno na binárním rozhodování a pro reálné zavedení by bylo účelné vytvořit na základě socioekonomického a ekologického rozboru rozhodovací schéma odstupňované. To je však předpoklad týmové spolupráce a přesahuje to rámec mé diplomové práce.

9. Převedení vektorové vrstvy *landuse.shp* na rastr *landuse_r* pomocí funkce FEATURE TO RASTER. Hodnota pro výsledný rastr je KOD_L, název výsledného gridu landuse_r a Cell size je definováno podle rastru sklonu (Obrázek 15).

Input features	
landuse] 🗃
Field	
KOD_L	-
Output raster	
C:\skp\vysledky\landuse_r	B
Output cell size (optional)	
C:\skp\data\sklon_r	- 🗃
	-

Obrázek 15 Vzorově vyplněné zadání pro nástroj Feature to Raster – převod vektorové vrstvy na rastr

10. Spojení rastru *landuse_r* a *vypocet* pomocí nástroje COMBINE (Obrázek 16). Výsledkem je rastr *combine_2* (Obrázek 17).

🎤 Com	bine	
	Input rasters	
	· ·	
	✓ landuse_r ✓ yppocet	+
		×
		1
		Ŧ
	Output raster	
	C:\skp\vysledky\combine_2	E
<		
	OK Cancel Environments SI	now Help >>

Obrázek 16 Vyplněné zadání pro nástroj Combine – spojení rastru landuse_r a vypocet

	Attribut	es of com	bine_2			
	Rowid	VALUE *	COUNT	LANDUSE R	VYPOCET	~
	0	1	382	6	1	
186	1	2	109	6	2	
	2	3	2094	6	3	
	3	4	22	6	4	
	4	5	27	6	5	
100	5	6	660	6	6	
	6	7	146	6	7	
	7	8	458	6	8	
	8	9	162	6	9	
60	9	10	374	6	10	
	10	11	52	6	11	×
	Record		1	▶ ▶I Sho	w: All Se	lected Records (0 out of 935 Selected)

Obrázek 17 Ukázka z atributové tabulky combine_2

11. Připojení tabulky *landuse.dbf* (Obrázek 18), tabulky rastru *vypocet* (Obrázek 19) a tabulky *atributy_opt.dbf* (Obrázek 20) k rastru *combine_2* pomocí funkce JOIN.

P Ada	l Join 🔲 🗖 🔀
	Layer Name or Table View
	combine_2
	Input Join Field
	LANDUSE_R
	Join Table
	landuse 🗾 🖻
	Output Join Field
	KOD_L
	🔽 Keep All
<	
	OK Cancel Environments Show Help >>

Obrázek 18 Připojení tabulky landuse.dbf k tabulce rastru combine_2

🎤 Ada	l Join 📃 🗖 🔀
	Layer Name or Table View
	combine_2
	Input Join Field
	combine_2.vat:VYPOCET
	Join Table
	vypocet 🗾 🗃
	Output Join Field
	VALUE
	I Keep All
<	
	OK Cancel Environments Show Help >>

Obrázek 19 Připojení tabulky vypocet k tabulce rastru combine_2

🎤 Ad	i Join 📃 🗖 🔀
	Layer Name or Table View
	optimal 🗾 🖻
	Input Join Field
	OID
	Join Table
	atributy_opt
	Output Join Field
	I Keep All
<	
	OK Cancel Environments Show Help >>

Obrázek 20 Připojení tabulky atributy_opt.dbf k tabulce rastru combine_2

12. Funkce COMPOSITE BANDS uloží atributy všech připojených tabulek do jednoho rastru (bez indexů). Výsledkem je rastr *optimal*, nad kterým bude probíhat zjištění konfliktních ploch, územních rezerv a návrh změn ve využití.

Input Rasters	~1
1	
	+
	×
	T
	Ŧ
Output Raster	_
Culdroly and address of the second se	62

Obrázek 21 Okno pro zadání funkce Composite Bands

13. Smazání nepotřebných atributů podle uvážení – je nutné zachovat atributy krajinného potenciálu jednotlivých aktivit (KP_A, KP_B, ..., KP_G), vhodnosti (VHOD_A, ..., VHOD_G), pole GBC, OPTIMAL, LAND, KOD_L a atributy z připojené tabulky *atributy_opt.dbf*.

Následující kroky 14. – 17. jsou příkladově popsány na zpracování aktivity lyžování – A, případně optimálního využití - O. Tyto kroky je však nutné zopakovat stejným postupem vždy pro všechny aktivity (A, B, C, D, E, F, G) i pro aktivity optimálního využití (O). Všechny vzorce pro zjištění hodnot atributů u jednotlivých aktivit jsou uloženy na CD ve složce .../SKP/vypocty pod názvem zjišťovaného atributu.

14. Vytvoření kódu kombinace sledované aktivity a současného využití ploch pomocí nástroje FIELD CALCULATOR. Výsledky kombinací jednotlivých aktivit jsou zapsány do pole KOMB_A, KOMB_B, ..., KOMB_G, KOMB_O.

Zápis v kalkulátoru pro aktivitu A: KOMB_A = "A" & [LAND]

Zápis pro aktivity optimálního využití: KOMB_O = [OPTIMAL] & [LAND]

Obrázek 22 Ukázka zápisu ve Field Calculator pro zjištění možné kombinace využití

15. Vložení informace o možnosti změnit využití území – pomocí funkce JOIN připojím tabulku *zmena.dbf*. Atributy k propojení jsou KOMB_A (z rastru *optimal*) a KOMB (z tabulky *zmena.dbf*) viz. Obrázek 23. Hodnoty ZMENA přepíšu pomocí FIELD CALCULATOR do pole ZMENA_A a tabulku *zmena.dbf* odpojím.

🎤 Add Join		
Layer	r Name or Table View	<u>ک</u> ا ن ھا
Input	: Join Field	
Join T	18_A Table	
zmer	na 👤	B
Outpu KOM	ut Join Field 18	
М к	Keep All	
<		>
	OK Cancel Environments Sh	ow Help >>

Zápis calculatoru: [optimal.vat:ZMENA_A] = [zmena.ZMENA]

Obrázek 23 Připojení tabulky zmena.dbf k rastru optimal

16. Zjištění územních rezerv – územní rezerva se týká pouze aktivit, které mají hodnotu KP hodnocenou jako NAP (nadprůměrně vhodná plocha) nebo VVP (velmi vhodná plocha) a je u nich schválena teoretická možnost změny tzn.v poli ZMENA_A mají hodnotu "1" (vhodná změna). Výběr lokalit splňující tyto podmínky provedeme pomocí příkazu SELECT BY ATRIBUTES a vybrané hodnoty vložíme do pole REZERVA_A pomocí FIELD CALCULATOR. Tento krok se nedělá pro optimální využití (O) – pro něj je postup uveden v kroku č. 18.

Zápis výběru územních rezerv pro aktivitu A (SELECT BY ATRIBUTES):

"VHOD_A" = '1-VVP' AND "ZMENA_A" = '1' OR "VHOD_A" = '2-NAP' AND "ZMENA_A" = '1'

17. Funkční konflikty označují takové lokality, jejichž současné využití danou aktivitou bylo při hodnocení KP označeno nízkou vhodností (VHP, NAP, VVP) – v poli KONFLIKT_A tedy musí zůstat pouze hodnoty "X" označující lokalitu s nízkou vhodností (VHP, NAP, VVP). Opět pomocí SELECT BY ATRIBUTES vybereme lokality splňující dané podmínky a pomocí FIELD CALCULATOR vložíme vybrané hodnoty do pole KONFLIKT_A. Tento krok se nedělá pro optimální využití (O).

Zápis výběru konfliktních ploch pro aktivitu A (SELECT BY ATRIBUTES):

"VHOD_A" = '3-VHP' AND "ZMENA_A" = 'X' OR "VHOD_A" = '4-MVP' AND "ZMENA_A" = 'X' OR "VHOD_A" = '5-NEP' AND "ZMENA_A" = 'X'

- 18. Doporučený návrh změn ve využití vychází ze zjištěného optimálního využití území (atribut OPTIMAL). U optimálního využití se nezjišťují územní konflikty, protože jsou zde vybrány pouze lokality s mírou vhodnosti NAP (nadprůměrně vhodná plocha) a VVP (velmi vhodná plocha). Pro výsledek máme již připravené prázdné atributové pole NAVRH_ZMEN, které vyplníme podle následujících pravidel:
 - tam, kde je hodnota ZMENA_O rovna "1" doplníme do pole NAVRH_ZMEN kód navrhovaných aktivit, tzn. kódy z pole OPTIMAL
 - tam, kde je hodnota ZMENA_O rovna "0" nebo "X" doplníme do pole NAVRH_ZMEN kód aktivit současného využití, tzn. kódy z pole LAND

Pro konečnou vizualizaci doporučeného návrhu změn ve využití území je možné využít vrstvu rozvojových limitů (limity.shp), která zajišťuje nedotknutelnost vymezených ploch v území.

Hlavním výsledkem uvedeného postupu je rastr *vypocet* a rastr *optimal* se svými nově zjištěnými atributy. U rastru *vypocet* se jedná o atribut označení jednotlivých geobiocénů (atribut GBC), hodnoty krajinného potenciálu pro jednotlivé sledované aktivity (atributy KP_A, KP_B, ..., KP_G) a rozdělení lokalit do kategorií podle míry vhodnosti (VHOD_A, VHOD_B, ..., VHOD_G). Mezi nejdůležitější výsledky rastru *optimal* patří informace o optimálním využití území (atribut OPTIMAL), zjištěné konfliktní plochy (KONFLIKT_A, ..., KONFLIKT_G), územní rezervy (REZERVA_A, ..., REZERVA_G) a navržení změn ve využití území (NAVRH_ZMEN).